Ultra Precision Power Resistor (10 Watts) | | TCR, RESISTANCE RANGE, TOLERANCE,
RATED POWER | | | | | | |------|--|----------------------------|---|---|--|--| | Туре | TCR (ppm/°C)
-25°C to
125°C* | Resistance
Range
(Ω) | Resistance
Tolerance (%)*† | Rated
Power
(W)
at 25°C | | | | РВ | 0±15 (W) | 0.4 to 1 | 1 to ±5
(F, G, J) | | | | | | 0±15 (W)
0±5 (X)
0±2.5 (Y) | 1 to 5 | ±0.5 to ±5
(D, F, G, J) | | | | | | | 5 to 10 | ±0.1 to ±5
(B, D, F, G, J) | | | | | | | 10 to 25 | ±0.05 to ±5
(A, B, D, F, G, J) | 2
in free air
and
10
On heat
sink ** | | | | | | 25 to 50 | ±0.02 to ±5
(Q, A, B, D, F, G, J) | | | | | | | 50 to 50k | ±0.01 to ±5
(T, Q, A, B, D, F, G, J) | | | | | | 0±15 (W) | 0.002 to
0.05 | ±0.5 to ±5
(D, F, G, J) | | | | | PC | 0±15 (W)
0±5 (X) | 0.05 to 0.1 | ±0.5 to ±5
(D, F, G, J) | | | | | | 0±15 (W)
0±5 (X)
0±2.5 (Y) | 0.1 to 5 | ±0.1 to ±5
(B, D, F, G, J) | | | | | | | 5 to 10 | ±0.05 to ±5
(A, B, D, F, G, J) | | | | | | | 10 to 25 | ±0.02 to ±5
(Q, A, B, D, F, G, J) | | | | | | | 25 to 100 | ±0.01 to ±5
(T, Q, A, B, D, F, G, J) | | | | - * Symbols in parentheses are for type number composition. - † Resistance figures for type PB are the values obtained by measuring the leads at point 12.7±3.2 mm away from the root, but in case of resistance below 10 ohm, the values at 5.08±0.6 mm away. - ** For heat sinking, an aluminum chassis in 152.4 (L) x 101.6 (W) x 50.8 (H) x 1.0 mm (T) shall be used. | PERFORMANCE | | | | | | | |--|---|--|--|--|--|--| | Parameters | Test Condition | MIL-R-39009
Specification | ALPHA Typical
Test Data | | | | | Maximum Rated Operating Temperature
Working Temperature Range
Maximum Working Voltage
Maximum Working Current | | –55°C to
75 | °C
0 +155°C
0V
PC=32A | | | | | Power Conditioning | 25°C, Rated Voltage, 96 hrs. | ±0.2% | ±0.2% | | | | | Low Temperature Storage Dielectric Withstanding Voltage Insulation Resistance Low Temperature Operation Overload Moisture Resistance Terminal Strength | -55°C, No Load, 24 hrs. Atmo. Pres.: AC 1 KV, 1 min. Baro. Pres. 8 mHg: AC 500V, 1min. DC 500V, 2 min55°C, Rated Voltage Rated Voltage x 2.5, 5 sec. +65°C to -10°C, 90% RH to 98% RH, Rated Voltage, 10 cycles (240 hrs.) 2.27 kg (5 pounds),10 sec. | $\begin{array}{c} \pm 0.3\% \\ \pm 0.2\% \\ \text{over } 10,000 \text{ M}\Omega \\ \pm 0.3\% \\ \pm 0.3\% \\ \pm 0.5\% \\ \pm 0.2\% \end{array}$ | $\begin{array}{c} \pm 0.005\% \\ \pm 0.005\% \\ \text{over } 10,000 \ M\Omega \\ \pm 0.005\% \\ \pm 0.01\% \\ \pm 0.05\% \\ \pm 0.005\% \end{array}$ | | | | | Shock
Vibration, High Frequency | 100G, 6 ms., Sawtooth Wave, X, Y, Z, each 3 shocks
20G, 10 Hz to 2,000 Hz to 10 Hz, 20 min., X, Y, Z, each 4 hrs. | ±0.2%
±0.2% | ±0.005%
±0.005% | | | | | Life | 25°C, Rated Power, 1.5 hr. – ON, 0.5 hr. – OFF, 2,000 hrs. | ±1.0% | ±0.01% | | | | | High Temperature Exposure | 155°C, No Load, 2,000 hrs. | ±1.0% | ±0.01% | | | | | Solderability | 245°C, 5 sec. | over 95% coverage | | | | | ## **FOUR-TERMINAL RESISTOR** For low ohmic resistor (less than 10 ohm), the resistance value and TCR of the copper lead increases overall resistance value. Four-terminal (Kelvin) connection is recommended per the following figure. Loading current at terminals (V) causes measurement error.