

CLL Series Ultra Low Inductance Capacitors

CLLC1A CLLE1A

Type:

Issue date: April 2011

TDK MLCC US Catalog

REMINDERS

Please read before using this product

SAFETY REMINDERS

REMINDERS

- 1. If you intend to use a product listed in this catalog for a purpose that may cause loss of life or other damage, you must contact our company's sales window.
- 2. We may modify products or discontinue production of a product listed in this catalog without prior notification.
- 3. We provide "Delivery Specification" that explain precautions for the specifications and safety of each product listed in this catalog. We strongly recommend that you exchange these delivery specifications with customers that use one of these products.
- 4. If you plan to export a product listed in this catalog, keep in mind that it may be a restricted item according to the "Foreign Exchange and Foreign Trade Control Law". In such cases, it is necessary to acquire export permission in harmony with this law.
- 5. Any reproduction or transferring of the contents of this catalog is prohibited without prior permission from our company.
- 6. We are not responsible for problems that occur related to the intellectual property rights or other rights of our company or a third party when you use a product listed in this catalog. We do not grant license of these rights.
- 7. This catalog only applies to products purchased through our company or one of our company's official agencies. This catalog does not apply to products that are purchased through other third parties.

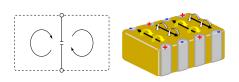
CLL Series

Ultra Low Inductance Capacitors

Type: CLLC1A (C1608), CLLE1A (C2012)

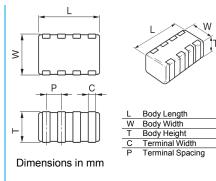
Features

- · Features a unique internal structure that cancels magnetic fields to reduce equivalent series inductance
- · Eight side terminal electrodes in one capacitor


Applications

- · Decoupling CPU power line
- · High speed digital IC/decoupling
- GPU/CPU

Structure



	ULI		FLIP	STD	
Chip Size	C1608 C201		C1632	C2012	
Сар.	1μF	1µF	1µF	1µF	
W.V.	0G (4V)	0G (4V)	1A (10V)	1A (10V)	
ESL	65pH	70pH	180pH	850pH	

Shape & **Dimensions**

CLLC1A X7R OJ 105 M T XXXX

S	eries Name		
	Case Code	Length	Width
	CLLC1A	1.60 ± 0.10	0.80 ± 0.10
	CLLE1A	2.00 ± 0.15	1.25 ± 0.15

Temperature Characteristic

Temperature Characteristics	Capacitance Change	Temperature Range
X7R	± 15%	-55 to +125°C
X7S	± 22%	-55 to +125°C

Rated Voltage (DC)

Voltage Code	Voltage (DC)
0G	4V
0J	6.3V
1A	10V

Internal Codes

Packaging Style

Packaging Code	Style	
T	Tape & Reel	
Capacitance Toler	ance	

Tolerance Code	Tolerance
M	± 20%

Nominal Capacitance (pF)

The capacitance is expressed in three digit codes and in units of pico Farads (pF). The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. R designates a decimal point.

Capacitance Code	Capacitance
0R5	0.5pF
010	1pF
102	1,000pF (1nF)
105	1.000.000pF (1µF)

CLLC1A [EIA CC0603]

Capacitance Range Chart

Temperature Characteristics: X7S (± 22)

Rated Voltage: 4V (0G)

Capacitance (pF)	Cap Code	Tolerance	X7S 0G (4V)
330,000	334	M: ± 20%	(+*)
470,000	474		
680,000	684		
1,000,000	105		

Standard Thickness
0.50 mm

CLLC1A [EIA CC0603]

Class 2 (Temperature Stable)

Temperature Characteristics: X7S (-55 to +125°C, ±22%)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
CLLC1AX7S0G334M	X7S	4V	330,000	± 20%	0.50 ± 0.10
CLLC1AX7S0G474M	X7S	4V	470,000	± 20%	0.50 ± 0.10
CLLC1AX7S0G684M	X7S	4V	680,000	± 20%	0.50 ± 0.10
CLLC1AX7S0G105M	X7S	4V	1,000,000	± 20%	0.50 ± 0.10

CLLE1A [EIA CC0805]

Capacitance Range Chart

Temperature Characteristics: X7R (± 15%), X7S (± 22)

Rated Voltage: 10V (1A), 6.3V (0J), 4V (0G)

Consoltones	0		X7R		X7S	
Capacitance (pF)	Cap Code	Tolerance	1A (10V)	0J (6.3V)	0G (4V)	
100,000	104	M: ± 20%				
150,000	154					
220,000	224					
330,000	334					
470,000	474					
680,000	684					
1,000,000	105					C+.
1,500,000	155					St
2,200,000	225					
4,700,000	475					

CLLE1A [EIA CC0805]

Class 2 (Temperature Stable)

Temperature Characteristics: X7R (-55 to +125°C, ±15%), X7S (-55 to +125°C, ±22%)

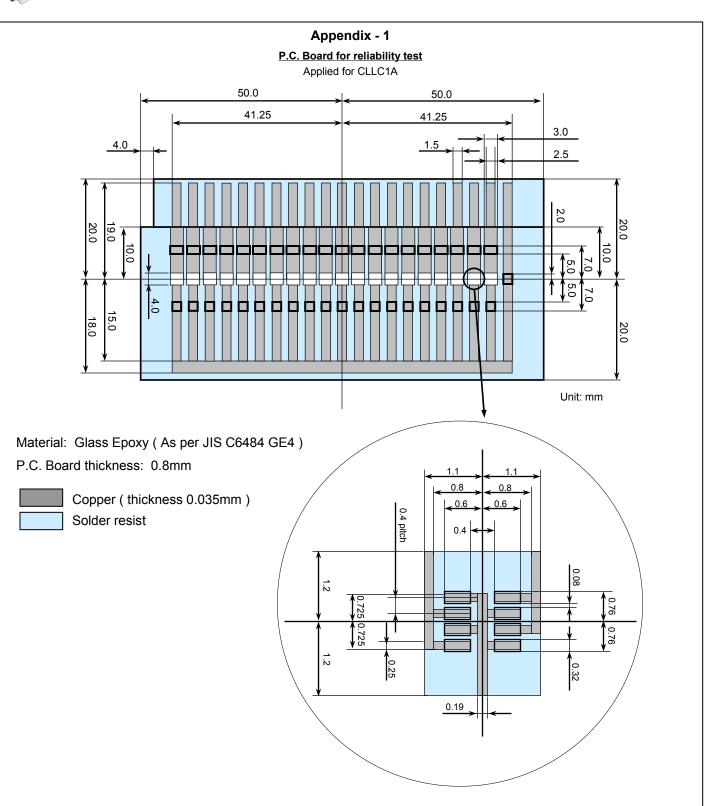
TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
CLLE1AX7R1A104M	X7R	10V	100,000	± 20%	0.50 ± 0.10
CLLE1AX7R1A154M	X7R	10V	150,000	± 20%	0.50 ± 0.10
CLLE1AX7R1A224M	X7R	10V	220,000	± 20%	0.50 ± 0.10
CLLE1AX7R1A334M	X7R	10V	330,000	± 20%	0.50 ± 0.10
CLLE1AX7R0J474M	X7R	6.3V	470,000	± 20%	0.50 ± 0.10
CLLE1AX7R0J684M	X7R	6.3V	680,000	± 20%	0.50 ± 0.10
CLLE1AX7R0J105M	X7R	6.3V	1,000,000	± 20%	0.85 ± 0.10
CLLE1AX7R0J155M	X7R	6.3V	1,500,000	± 20%	0.85 ± 0.10
CLLE1AX7S0G105M	X7S	4V	1,000,000	± 20%	0.50 ± 0.10
CLLE1AX7S0G155M	X7S	4V	1,500,000	± 20%	0.50 ± 0.10
CLLE1AX7S0G225M/0.50	X7S	4V	2,200,000	± 20%	0.50 ± 0.10
CLLE1AX7S0G225M/0.85	X7S	4V	2,200,000	± 20%	0.85 ± 0.10
CLLE1AX7S0G475M	X7S	4V	4,700,000	± 20%	0.85 ± 0.10

CLL Series – ULI Capacitors

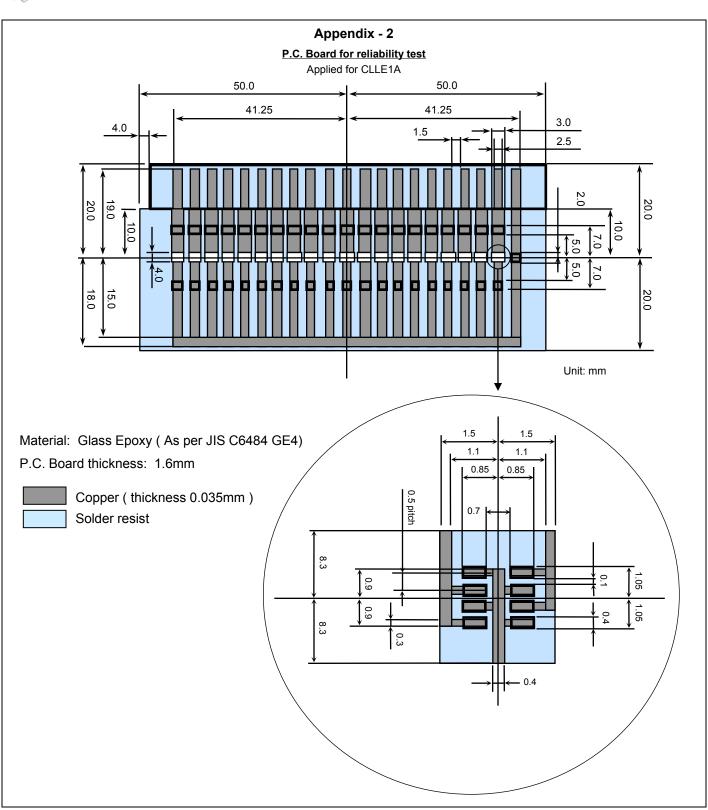
1	Specifications				OL.	Capaditors	
No.	Item	Perfor	mance	Test or Insp	ection Metho	d	
1	External Appearance	No defe perform	cts which may affect ance.	Inspect with n	nagnifying glass	(3×).	
2	Insulation Resistance	100ΜΩ•	μF min.		oltage for 60s. rminal electrodes	s at the same time.	
3	Voltage Proof		nd test voltage without on breakdown or other damage.	5s. Charge / d	discharge curren	hall be applied for 1 to t shall not exceed 50mA. s at the same time.	
4	Capacitance		he specified tolerance at sage (Per IEC-384-9).	Measuring Frequency	Withstanding Voltage	Measuring voltage	
				1kHz±10%	10V ≤ 6.3V		
				Measure 8 ter	minal electrodes	s at the same time.	
5	Dissipation Factor (Class 2)	T.C. X7R X7S	0.10 max.	See No.4 in this table for measuring condition			
7	Temperature Characteristics of Capacitance (Class 2) Robustness of Terminations	No sign	In DC Voltage Applied X7R: ± 15% X7S: ± 22% of termination coming off, ge of ceramic, or other abnormal	the following to for each step. ΔC be calculated step. 1 2 3 4 Reflow solder	te shall be measured by the steps shown in g table after thermal equilibrium is obtained by the after thermal equilibrium is obtained by the step. The state of the step of t		
8	Solderability		inations shall exhibit a ous solder coating free from	Capacitor P.C. Board Completely soak both terminations in solder at 235±5°C for 2±0.5s.			
	defec surfac termir dewe are no surfac expos		for a minimum of 75% of the area of any individual tion. Anomalies other than ng, non-wetting, and pin holes cause for rejection. Ceramic of A sections shall not be d due to melting or shifting of tion material.	Solder : H63A Flux : Isopro	x (JIS Z 3282) pyl alcohol (JIS	K 8839) % solid solution.	

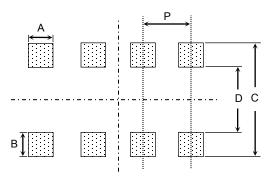
A section

No.	Item	Performance		Test or Inspection Method			
9	Resistance to solder heat		Completely soak both terminations in solder at				
	External appearance	No cracks are allowed and terminations shall be covered at least 60% with new solder		260±5°C for 5±1s. Preheating condition Temp.: 150±10°C			
	Capacitance	Characteristics Characteristics			Time : 1 to 2min.		
		X7R X7S	± 7.5 %	R	Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution.		
	D.F. (Class 2)	Meet the initial sp	Meet the initial spec.		H63A (JIS Z 3282)	ditions for OA Ob	
	Insulation Resistance	Meet the initial sp	ec.	Leave the capacitor in ambient control before measurement.		nations for 24±2n	
10	Vibration	No mechanical damage.		Reflow solder the capacitor on a P.C. board (shown in Appendix 1 and 2) before testing. Vibrate the capacitor with amplitude of 1.5mm P-P sweeping the frequencies from 10Hz to 55Hz and back to 10Hz in about 1 minute.			
	External appearance						
	Capacitance Characteristic		Change from the value before test				
		X7R X7S	± 7.5 %	-	epeat this for 2h each in 3 perpendicular directions th in total).		
	D.F. (Class 2)	Meet the initial sp	ec.	_			
11	11 Temperature cycle External No mechani appearance		amage.	Reflow solder the capacitors on a P.C. board (shown in Appendix 1 and 2) before testing. Expose the capacitor in the condition step1 through			
	Capacitance	Characteristics	Change from the value before test	 step 4, and repeat 5 times consecutively. Leave the capacitor in ambient conditions for 24±2h 			
		X7R X7S	± 7.5 %	Step	before measurement. Step Temperature (°C) Time (min.)		
	D.F. (Class 2)	Moot the initial en			Min. operating temp. ±3	30 ± 3	
-			Meet the initial spec.		Reference Temp.	2 – 5	
	Insulation	Meet the initial spec.		3	Max. operating temp. \pm 2	30 ± 2	
	Resistance				Reference Temp.	2 - 5	
	Voltage Proof	No insulation breakdown or other damage.					



No.	Item	Performance		Test or Inspection Method		
12	Moisture Resistance (Steady State) External No mechanical damage. appearance			Reflow solder the capacitor on P.C. board (shown in Appendix 1 and 2) before testing. Leave at temperature 40±2°C and 90 to 95%RH for		
	Capacitance	Characteristics Change from the value before test		500 +24,0h. Leave the capacitor in ambient condition for 24±2h		
		X7R X7S	± 12.5 %	before measurement.		
	D.F. (Class 2)	Characteristics: X7R: 200% of initial spec. max. X7S: 200% of initial spec. max.		_		
	Insulation Resistance	10MΩ·μF min.				
13	Moisture Resistance			Reflow solder the capacitors on P.C. board (shown in Appendix 1 and 2) before testing.		
	External appearance	No mechanical da	amage.	Apply the rated voltage at temperature 40±2°C and 90— to 95%RH for 500 +24,0h.		
	Capacitance	Characteristics	Change from the value before test	Charge/discharge current shall not exceed 50mA.		
		X7R X7S	± 12.5 %	Leave the capacitor in ambient conditions for $48\pm4h$ before measurement.		
	D.F. (Class 2)	Characteristics X7R: 200% of initial spec. max. X7S: 200% of initial spec. max.		Voltage conditioning: Voltage treat the capacitors under testing temperature and voltage for 1 hour. Leave the capacitors in ambient condition for 24±2h before measurement.		
	Insulation Resistance	5MΩ·µF min.				
				Use this measurement for initial value.		
14	Life External	No mechanical damage.		Reflow solder the capacitor on P.C. board (shown in Appendix 1 and 2) before testing.		
	appearance			Apply 1 x rated voltage at 125±2°C for 1,000 +48, 0h		
	Capacitance	Characteristics	Change from the value before test	Charge/discharge current shall not exceed 50mA.		
		X7R X7S	± 15 %	Leave the capacitors in ambient condition for $24\pm2h$ before measurement.		
	D.F. (Class 2)	Characteristics X7R: 200% of initial spec. max.		 Voltage conditioning: Voltage treat the capacitor under testing temperature and voltage for 1 hour. 		
	Insulation	X7S: 200% of initial spec. max. 10MΩ·μF min.		 Leave the capacitor in ambient conditions for 48±4h before measurement. 		
	Resistance			Use this measurement for initial value.		





CLL Series – ULI Capacitors

Recommended Soldering Land Pattern

Reflow Soldering

Unit: mm

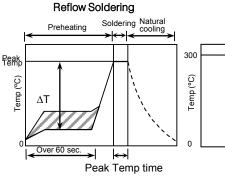
Туре	CLLC1A	CLLE1A		
Symbol	(C1608/CC0603)	(C2012/CC0805)		
Α	0.25	0.3		
В	0.4	0.3 ~ 0.6		
С	1.2	1.3 ~ 1.8		
D	0.4	0.5 ~ 0.8		
Р	0.4	0.5		

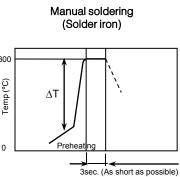
Recommended Solder Amount

Excessive solder

Higher tensile force on the chip capacitor may cause cracking.

Adequate solder




Insufficient solder

Small solder fillet may cause contact failure or failure to hold the chip capacitor to the P.C. board.

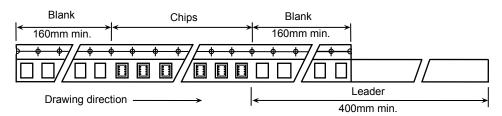
Recommended Soldering Profile

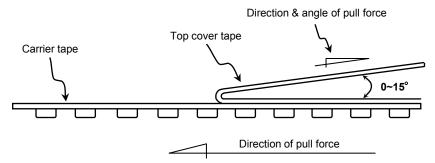
Recommended soldering duration

	Temp./	Reflow Soldering			
Solder	Dura.	Peak temp (°C)	Duration (sec.)		
Sn-Pb Solder		230 max.	20 max.		
Lead-Free Solder		260 max.	10 max.		

Recommended solder compositions Sn-37Pb (Sn-Pb solder) Sn-3.0Ag-0.5Cu (Lead Free Solder)

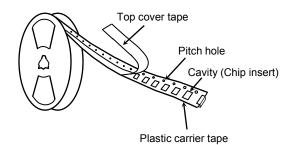
Preheating Condition


=			
Soldering	Temp. (°C)		
Reflow soldering	ΔT ≤ 150		
Manual soldering	ΔT ≤ 150		



CLL Series – ULI Capacitors

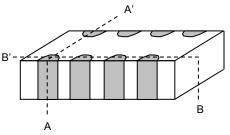
· Carrier Tape Configuration

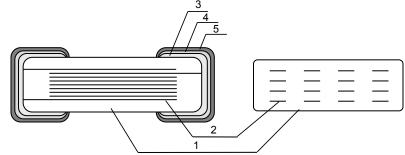


· Peel Back Force (Top Tape)

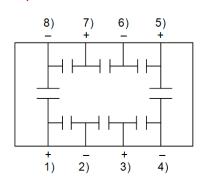
- Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- \bullet The missing of components shall be less than 0.1%
- Components shall not stick to the cover tape.
- The cover tape shall not protrude beyond the edges of the carrier tape and shall not cover the sprocket holes.

· Chip Quantity Per Reel and Structure of Reel

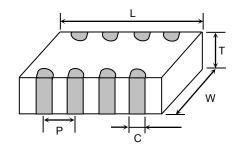

Series	Taping	Chip quantity (pcs.)		
Series	Material	φ178mm (7") reel	φ330mm (13") reel	
CLLC1A	Plastic	4,000	10,000	
CLLE1A		4,000	10,000	



CLL Series – ULI Capacitors


Inside Structure & Material System

No.	NAME	MATERIAL		
		Class 2		
(1)	Ceramic Dielectric	BaTiO ₃		
(2)	Internal Electrode	Nickel (Ni)		
(3)		Copper (Cu)		
(4)	Termination	Nickel (Ni)		
(5)		Tin (Sn)		



Equivalent Circuit

- + 1) 3) 5) 7) - 2) 4) 6) 8)
- 8 terminals are connected and measured at the same time.

Shape & Dimensions

| Case Code | | | Dimensions (mm) | | | | |
|-----------|-------|--------|-----------------|------|-----------|------|------|
| Series | JIS | EIA | L | W | Т | Р | С |
| CLLC1A | C1608 | CC0603 | 1.60 | 0.80 | 0.55 max. | 0.40 | 0.25 |
| CLLE1A | C2012 | CC0805 | 2.00 | 1.25 | 0.95 max. | 0.50 | 0.25 |

Environmental Information

TDK Corporation established internal product environmental assurance standards that include the six hazardous substances banned by the EU RoHS Directive¹ enforced on July 1, 2006 along with additional substances independently banned by TDK and has successfully completed making general purpose electronic components conform to the RoHS Directive².

- Abbreviation for Restriction on Hazardous Substances, which refers to the regulation EU Directive 2002/95/EC on hazardous substances by the European Union (EU) effective from July 1, 2006. The Directive bans the use of six specific hazardous substances in electric and electronic devices and products handled within the EU. The six substances are lead, mercury, cadmium, hexavalent chromium, PBB (polybrominated biphenyls), and PBDE (polybrominated diphenyl ethers).
- This means that, in conformity with the EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
- For REACH (SVHC: 15 substances according to ECHA / October 2008): All TDK MLCC do not contain these 15 substances.
- For European Directive 2000/53/CE and 2005/673/CE:
 Cadmium, Hexavalent Chromium, Mercury, Lead are not contained in all TDK MLCC.
- For European Directive 2003/11/CE: Pentabromodiphenylether, Octabromodiphenylether are not contained in all TDK MLCC.