SAMSUNG
ELECTRO-MECHANICS

Specification of Automotive MLCC

- Supplier : Samsung Electro-Mechanics
- Product : Multi-layer Ceramic Capacitor
- Samsung P/N: CL21B222KC6WPNC

Description : CAP, $2.2 \mathrm{nF}, 100 \mathrm{~V}, \pm 10 \%, \mathrm{X} 7 \mathrm{R}, 0805$

- AEC-Q200 Qualified

Dimension

Size	0805 inch
L	$2.00 \pm 0.10 \mathrm{~mm}$
W	$1.25 \pm 0.10 \mathrm{~mm}$
T	$0.60 \pm 0.10 \mathrm{~mm}$
BW	$0.50+0.20 /-0.30 \mathrm{~mm}$

B. Samsung Part Number

$\underline{\mathrm{CL}}$	$\underline{21}$	$\underline{\mathrm{~B}}$	$\underline{222}$	$\underline{\mathrm{~K}}$	$\underline{\mathrm{C}}$	$\underline{6}$	$\underline{\mathrm{~W}}$	$\underline{\mathrm{P}}$	$\underline{\mathrm{N}}$	$\underline{\mathrm{C}}$
$\mathbf{(1)}$	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)

(1) Series	Samsung Multi-layer Ceramic Capacitor			
(2) Size	0805	(inch code)	L : $2.00 \pm 0.10 \mathrm{~mm}$	W : $1.25 \pm 0.10 \mathrm{~mm}$
(3) Dielectric		X7R	(8) Inner electrode	Ni , Open Mode Design
(4) Capacitance		2.2 nF	Termination	Metal-Epoxy
(5) Capacitance		$\pm 10 \%$	Plating	Sn 100\% (Pb Free)
tolerance			(9) Product	Automotive
(6) Rated Voltage		100 V	(10) Special code	Normal
(7) Thickness		$0.60 \pm 0.10 \mathrm{~mm}$	(11) Packaging	Cardboard Type, 7" Reel

C. Reliability Test and Judgement condition

Test items	Performance	Test condition
High Temperature Exposure	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan $\delta: 0.03$ max. IR : More than $10,000 \mathrm{M} \Omega$ or $500 \mathrm{M} 8 \times \mu \mathrm{F}$ Whichever is smaller	Unpowered, 1,000hrs @ Max. temperature Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion Initial Measurement 2* Final Measurement 3*
Temperature Cycling	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan $\delta: 0.03$ max. IR : More than $10,000 \mathrm{M} \Omega$ or $500 \mathrm{M} 2 \times \mu \mathrm{F}$ Whichever is smaller	1,000Cycles Initial Measurement 2* Final Measurement 3* Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion 1 cycle condition : $-55+0 /-3^{\circ} \mathrm{C}(30 \pm 3 \mathrm{~min}) \rightarrow$ Room Temp. (1min) $\rightarrow 125+3 /-0^{\circ} \mathrm{C}(30 \pm 3 \mathrm{~min}) \rightarrow$ Room Temp. (1min)
Destructive Physical Analysis	No Defects or abnormalities	Per EIA 469
Humidity Bias	Appearance : No abnormal exterior appearance Capacitance Change Within ± 12.5 \% Tan $\delta: 0.035$ max. IR :More than $500 \mathrm{M} \Omega$ or $25 \mathrm{M} \Omega \times \mu \mathrm{F}$ Whichever is smaller	$1,000 \mathrm{hrs} 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$, Rated Voltage and $1.3 \sim 1.5 \mathrm{~V}$, Add 100kohm resistor Initial Measurement 2* Final Measurement 4* Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion The charge/discharge current is less than 50 mA .
High Temperature Operating Life	Appearance : No abnormal exterior appearance Capacitance Change Within ± 12.5 \% Tan $\delta: 0.035$ max. IR : More than $1,000 \mathrm{M} \Omega$ or $50 \mathrm{MR} \times \mu \mathrm{F}$ Whichever is smaller	1,000hrs @ $125^{\circ} \mathrm{C}, 200 \%$ Rated Voltage, Initial Measurement 2* Final Measurement 4* Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion The charge/discharge current is less than 50 mA .

D. Recommended Soldering method :

Reflow (Reflow Peak Temperature : $260+0 /-5^{\circ} \mathrm{C}$, 30sec.), Meet IPC/JEDEC J-STD-020 D Standard
*1 : The figure indicates typical specification. Please refer to individual specifications.
*2 : Initial measurement : Perform a heat treatment at $150+0 /-10^{\circ} \mathrm{C}$ for one hour after soldering process.
and then let sit for 24 ± 2 hours at room temperature. Perform the initial measurement.
*3 : Final measurement : Let sit for 24 ± 2 hours at room temperature after test conclusion, then measure.
*4 : Final measurement : Perform a heat treatment at $150+0 /-10{ }^{\circ} \mathrm{C}$ for one hour after soldering process.
and then let sit for 24 ± 2 hours at room temperature. Perform the initial measurement.
*5 : Final measurement : Let measure within 24 hours at room temperature after test conclusion.
Product specifications included in the specifications are effective as of March 1, 2013.
Please be advised that they are standard product specifications for reference only.
We may change, modify or discontinue the product specifications without notice at any time.
So, you need to approve the product specifications before placing an order.
Should you have any question regarding the product specifications, please contact our sales personnel or application engineers.

Disclaimer \& Limitation of Use and Application

The products listed in this Specification sheet are NOT designed and manufactured for any use and applications set forth below.

Please note that any misuse of the products deviating from products specifications or information provided in this Spec sheet may cause serious property damages or personal injury. We will NOT be liable for any damages resulting from any misuse of the products, specifically including using the products for high reliability applications as listed below.

If you have any questions regarding this 'Limitation of Use and Application', you should first contact our sales personnel or application engineers.
(1) Aerospace/Aviation equipment
(2) Medical equipment
(3) Military equipment
(4) Disaster prevention/crime prevention equipment
(5) Power plant control equipment
(6) Atomic energy-related equipment
(7) Undersea equipment
(8) Traffic signal equipment
(9) Data-processing equipment
(10) Electric heating apparatus, burning equipment
(11) Safety equipment
(12) Any other applications with the same as or similar complexity or reliability to the applications

