ANALOG
DEVICES

AD917x API Specification
Rev 1.1

AD917x API Specification Rev 1.1

TABLE OF CONTENTS

TIIETOAUCTION 1.ttt ettt stttk bbb bbb a e bbbt s bbb et b ettt bbbt b et bt sesaes 5
PUIPOSE .. bbb bbbttt bbbt nan 5
SCOPE .ttt RS S AR AR RS SReReReRsRRReeReseReseaeseaessa e s e 5
DDISCLAIINIET ... ettt ettt st sttt bt b bbbt b et d st h bt s e bt st et ae et ae et ae b et s bt ae et s et ae b et h et ae b aebaeaes 5

SOEWATE ATCRILECTUTE «..vuceeieeieieiicireieie ettt e bbbt bbbttt)
FOLACT STIUCLUTEvuveieeieceicticeeieie ettt et sttt et saeseens 7

APT INTETTACE «.uvuvreeeieieeireieiretseestietse ettt ettt ese e bbbt b s bbb s et e bt s et bbbt e bbbt s bbbt b et b s s saes 9
OVEIVIBW ...ttt ettt e ettt s b e ettt ettt s e e s s R R s bRttt bttt s s s s s s s se st st st ae sttt st ea s s senesenenencn 9
A DD L7X Nttt sttt sttt R A A St R AR SR AR A A e R AR e A A e R e Rt RS e A AR e RS A e A e A e s bR e A e A e R et s An R A b e b sassesebe s st eeResesesasanantetas 9
API_CONTIG Nt .10
I IR ettt ettt ettt ettt r et et r et et e s et et s et eaese s eaese s ese s et eaese s etes et ese s et e aen st eae s et esen st ese s ese st s eteseseaenesenentans 10
HAL Function Pointer DataTypes 12
W _OPIL_L ettt s e et nae 12
W CLOSE_t cunrtieiietctieeetcete ettt ettt ettt et be et s st et ese b et e s st et es et et es st e b ea s et ebeat et eseat et eR e Rt e s eR e Rt e R e R et et eR e et e R e R st e s eR st e R eR s s e b eR st er e Rt et e b easetereasetene s ereneans 13
FSPI_XIET T 1uvuevreueiuineineieietsetetie sttt ebe sttt seb s b e R bR bbb bR Rttt bbbt 14
F AR @IL_PIN_CEIL T ettt 15
HTESEE_PIN_CEIL ettt et et eeae 16
FARIAY_US_ ettt .17
ADI API Enumerations DataTyPes........ceuiiiiiiiiniiiniiisii st sss s ssssss s s sassssaans 18
AAL_CRIP It et Rt 18
SIGNAL EYPE_Leuiriiucireeeeeieeierciet ettt s ese s e ettt nae 19
SIGNAL COUPIINEG T cerierinireiieieiiieie ittt sa s 20
JESA_LINK ittt e e e e e Rt 21
JESA_SYIICOULD _tuerereiieieiciciceei ettt e e ettt aees 22
JESAUPATAINL Leueerrureuiueincenenireusessesiseesessesusetse e ssse bbbt ss bt b st e bbbttt ettt et 24

ErrOr HAnAIING ..o bbb bbb b 25
EITOT COAES ..ttt ettt e s sttt bttt bbbt bbbt bbbt st aetene 25

ADII7X APT LIDIATY ..ouverinieiicinieiieienieteierieasesessssse e sssssse s ssss s ssss s sse s ssessessssssessessssssessesssssessens 26

ADOI17x API Reference HAndIec.oueueieuriiirieiricieicieeiereieiseieeie ettt bttt bbbt beens 27
EYa LB 75l 1T s Ve | LI OO 27

AD917x API Definitions, Data Structures and ENUIMETAtIONS.c..c.eweveueieuneureereieieieireisetsessesesse ettt sessesesse et sessessssessesessessesscssesessesesnces 29
QAT 7X_AAS_SELECE_T.uvuriiueieciiciricieeciiete ettt 29
E Y6 LB 75 s £ Yol Y =) = o A OO 30
AA9T7X ChANTIEL SELECT tuunveieieeieeeeeeeeeee ettt et e e et et e et et et e e et e st et esessessentesessententesesseteneesessensenessensen 31
ad917x _jesd_link_stat_t 32
ad917x_jesd_serdes_pll_flg t 33

ADOLT7X APIS etttk h bbb h ettt E A bbb bbb A sttt et et E bbb b bbb b e st Rttt ettt ettt bebenenen 34
E e Ll 75 oV L SO 34
AADT7X AOINIt. ettt ettt et e e et e st et e s esseste st esess et et asess et estesessentsstasessentesteseasentesteseasenteseeseesenteseeseasentesteseasententesensenseneeneesensensenessensenean 35
ad917x_reset .36

Page 2 of 87

ad917x_get_chip_id.....ccccocveveuuuce
ad917x _set_dac_clk_frequency

ad917x_get_dac_ClRK_fTEQUENCYouvuriciceceececcceecete et sees
Ad917x_5et_dac_PLLCONTIGovurreriicicicieieceeccteee ettt
Ad917X_get_ daC_CIK_USTALUS «...cuueeeecereeceeicieiieeieieniete e ss st sa s saees

ad917x_set_dac_clk

ad917x_set_clkout_config

ad917x_set_page_idx

ad917x_get_page_idx

ad917x_set_channel_gain

ad917x_get_channel_gain

ad917x_set_dC_cal_tONE_AIMPcocveimiiceeeeieiercieieteaeeee et seae st

ad917x_ddsm_cal_dc_input_set

ad917x_ddsm_cal_dc_input_get

ad917x_dc_test_tone_set

ad917x_dc_test_tone_get

ad917x_1NCO_Channel freq etccocueuirriureereeicireicetieee e et sae e seas

ad917X_NCO_MAIN_FIOG_GOT.euvururieicireieieieiere ettt ese et eae s sae e seans

ad917x_jesd_config_datapath

ad917x_jesd_get_cfg_param

ad917x_jesd_set_sysref_enable

ad917x_jesd_get_sYSref NabLe ..ot
ad917x_jesd_set_syncoutb_enable
Ad917X_jeSA_GEt_CfZ SLATUS c..cvueeerecireeieeiceiciee et
ad917x_jesd_set_scrambler_enable
ad917x_jesd_set_lane XDATcccccuiiiiiririeiecccireee e

ad917x_jesd_get_lane_xbar...........

ad917x_jesd_invert_lane

ad917x_jesd_enable_datapath

ad917x_jesd_get_pll_status

ad917x_jesd_enable LINK ..ot sse st senes

EYa L 5 s et T =L A 8 AU

ad917x_nco_get_ftw

ad917x_nco_set_phase_offset

ad917x_nco_get_phase_offset

ad917x_nco_enable

ad917x_register_write

ad917x_register_read

ad917x_get_revision

Build and Integration Guide

Building the AD917x API Library

Integrating the AD917x API Library into an Application

Page 3 of 87

37
38
39
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
70
71
72
73
74
76
77
78
79
79

AD917x API Specification Rev 1.1

Appendix A

... 81
Pseudo Code Example for ADI17X RaNALe......c.cc.ecueiueieiiireineineieieie ettt sessesetse e bbb ses sttt bbb seseeee 81
APPEIAIX Bt bR 84
Flow Chart For Example AD917xX INItialiSation.......c.uiuiiiiiiiiiiiiiicici i ssss s ssssssssssssssssssssssssssssssssssssssans 84
Flow Chart For Example CLK CONTIGUIALION «......vuuevuruerereiieienmreetesssssesessssssssessessssssessessssssesssssssssesssssssssessessssssessessssssessessssssessessssssessesssssae 85
Flow Chart For Example JESD CONTIGUIAION «...cuvuuvuruiuermiieisenmiseiensesssesessessssssessessssssessessssssesssssssssessessssssessessssssessessssssessesssssessssssssessesssssae 86
ReVISION HISTOTY c..oviviiiitiitictt bbb .87

Page 4 of 87

INTRODUCTION

PURPOSE

This document serves as a programmer’s reference for using and utilizing various aspects of the ADI High Speed Converters DAC
Application Program Interface (API) library for the AD917x family of DACs. It describes the general structure of the AD917x API
library, provides a detail list of the API functions and its associated data structures, macros, and definitions.

SCOPE

Currently the AD917x API libraries targets the AD917x 16-bit 12 GSPS, RF Digital to Analog Converter with Channelizers

Table 1 AD917x

Target Device
Name

Device Description

Device Release Status

API Release Status

16-bit 12.6 GSPS, RF Digital to Analog Released Rev 1.1.1
AD9172 . .
Converter with Channelizers
AD9171 16-bit 6GSPS, RF Digital to Analog Released Rev 1.1.1
Converter.
16-bit 12.6 GSPS, RF Digital to Analog Released Rev 1.1.1
AD9173 . .
Converter with Channelizers
DISCLAIMER

The software and any related information and/or advice is provided on and “AS IS” basis, without representations, guarantees or
warranties of any kind, express or implied, oral or written, including without limitation warranties of merchantability fitness for a
particular purpose, title and non-infringement. Please refer to the Software License Agreement applied to the source code for full details.

Page 5 of 87

AD917x API Specification Rev 1.1

SOFTWARE ARCHITECTURE

The AD917x API library is a collection of APIs that provide a consistent interface to a variety of ADI High Speed Converter DAC devices.
The APIs are designed so that there is a consistent interface to the devices.

The library is a software layer that sits between the application and the DAC hardware. The library is intended to serve two purposes:

1- Provide the application with a set of APIs that can be used to configure RX hardware without the need for low-level register access.
This makes the application portable across different revisions of the hardware and even across different hardware modules.

2- Provide basic services to aid the application in controlling the DAC module, such as interrupt service routine, DAC high-level control

and status information.

The driver does not, in any shape or form, alter the configuration or state of DAC module on its own. It is the responsibility of the
application to configure the part according to the required mode of operation, poll for status, etc... The library acts only as an abstraction
layer between the application and the hardware.

As an example, the application is responsible for the following:
- Configuring the JESD Interface
- Configuring the NCOs

The application should access the DAC device only through the DAC libaries exported APIs. It is not recommended for the application to
access the DAC hardware device directly using direct SPI access. If the application chooses to directly access the DAC hardware this
should be done in a very limited scope, such as for debug purposes and it should be understood that this practice may affect the reliability

of the API functions.

dllgnd

a1eALd

Figure 1 Simple Overview of the DAC API Architecture

Page 6 of 87

FOLDER STRUCTURE

The collective files of the AD917x API library are structure as depicted in Figure 2. Each branch is explained in the following sections.
The library is supplied in source format. All source files are in standard ANSI C to simply porting to any platform.

/include API Interface include files

AD917x.h
api_def.h
api_config.h
api_errors.h

JAD917x AD916x APl Implementation

/common API Common Utility Functions
/doc APl Documentation

[Applications

/dac_example API integration example application

Figure 2 AD917x Source Code Folder Structure

/API

The AD917x API root folder contain all the source code and documentation for the AD917x APL

/APl/include

This folder contains all the API public interface files. These are the header files required by the client application.
/API/AD917x

This folder includes the main API implementation code for the AD917x DAC APIs and any private header files uses by the API. ADI
maintains this code as intellectual property and all changes are at their sole discretion.

/APl/common

This folder contains ADI helper functions common to all APIs, these functions are internal private functions not designed for use by
client application.

/API/AD917x/doc
This folder contains the doxygen documentation for the AD917x APIs.

Page 7 of 87

AD917x API Specification Rev 1.1

/Application/

This folder contains simple source code examples of how to use the DAC API. The application targets the AD917x evaluation board
platform. Customers can use this example code as a guide to develop their own application based on their requirements.

Page 8 of 87

API INTERFACE
OVERVIEW

The header files listed in include folder, /API/include, describe public interface of the DAC API the client application. It consists of
several header files listed in Table 2. Each API library will have a header file that lists its supported APIs that the client application may
use to interface with the ADI device. For example, the AD917x.h header file lists all the APIs that are available to control and configure
the AD917x DAC device. The other header files are used for definitions and configurations that may be used by the client application.
The features of which will be described in subsequent sections.

Table 2 DAC API Interface

Device Name Description To be included in Client Application
AD917x.h Lists AD917x DAC API Library exposed to client application | Yes
.) Defines the various configuration options for the DAC No
api_config.h
Module
abi defh Defines any macros/enumerations or structures or No
pi_det. definitions common to and used by all DAC API Libraries
abi errorh Defines the DAC APl interface errors and error handlers Yes
Pl ’ common to and used by all DAC API Libraries
AD917X.H

The AD917x API library has a main interface header file AD917x.h header file that defines the software interface to the AD917x DAC. It
consists of a list of API functions and a number of structures and enumerations to describe the configurations and settings that are
configurable on that particular device. In addition, the DAC device handle ad917x_handle_t this is a data structure that acts a software
reference to an instance to the DAC device. This handle maintains a reference to HAL functions and the configuration status of the chip.
This reference shall be instantiated by the client application, initialized by the application with client specific data.

API Handle

A summary of the user configurable components of this handle structure are listed in Table 3. Refer to the ad917x_handle_t section and
the HAL Function Pointer DataTypes section for full a description and more details on configuration.

The platform specific members of the structure must be configured by the client application prior to calling any API with the handle,

refer to the DAC Hardware section for more details.

Table 3 Components of the DAC APl handle

Structure Description User Read/Write Access Required by API
Member
Void Pointer to a user defined data Read/Write Optional
user_data structure. Shall be passed to all HAL
functions.
sdo Device SPI Interface configuration for DAC Read/Write Yes
hardware
syncoutb Desired Signal type for SYNCOUTB signal Read/Write
sysref Desired Input coupling for sysref signal Read/Write
dac freq hz DAC Clock Frequency in Hz. Valid range Read/Write Yes
—req- 2.9GHz to 12GHz
Pointer to SPI data transfer function for Read/Write Yes
dev_xfer
DAC hardware
delay_us Pointer to delay function for DAC hardware | Read/Write Yes
hw open Pointer to platform initialization function Read/Write Optional
-op for DAC hardware
Pointer to the platform shutdown function Read/Write Optional
hw_close
for DAC hardware
Pointer to a client event handler function Read/Write Optional
event_handler .
for DAC device.

Page 9 of 87

AD917x API Specification Rev 1.1

tx en pin ctrl Pointer to client application control Read/Write Optional
—&n_pin_ function of DAC device TX_ENABLE pin
reset bin ctrl Pointer to client application control Read/Write Optional
—pin_ function of DAC device RESETB pin

API_CONFIG.H

The API configuration header file, api_config.h, located in the /include folder defines the compilation build configuration options for the
DAC APL

The client application in general is not required to include or modify this file.

ADI_DEF.H

The AD917x AP is designed to be platform agnostic. However, it requires access to some platform functionality, such as SPI read/write
and delay functions that the client application must implement and make available to the AD917x API. These functions are collectively
referred to as the platform Hardware Abstraction Layer (HAL).

The HAL functions are defined by the API definition interface header file, adi_def.h. The implementation of these functions is platform
dependent and shall be implemented by the client application as per the client application platform specific requirements. The client
application will point the AD917x API to the required platform functions on instantiation of the AD917x API handle. The following is a
description of HAL components.

The AD917x API handle, ad917x_handle_t , has a function pointer member for each of the HAL functions and are listed in Table 4. The
client application shall assign each pointer the address of the target platform’s HAL function implementation prior to calling any DAC
API.

Table 4 Short Description of HAL Functions

Function Pointer | Purpose Requirement
Name

*spi_xfer_t Implement a SPI transaction Required
*hw_open_t Open and initialize Il resources and peripherals required for DAC Device Optional
*hw_close_t Shutdown and close any resources opened by hw_open_t Optional
*delay_us_t Perform a wait/thread sleep in units of microseconds Required
*tx_en_pin_ctrl_t | Set DAC device TX_ENABLE pin high or low. Optional
*reset_pin_ctrl_t Set DAC device RESETB pin high or low. Optional
*event_handler_t | Event notification handler Optional

DAC Hardware Initialization

The client application is responsible for ensuring that all required hardware resources and peripherals required by but external to the
DAC are correctly configured. The DAC API handle ad917x_handle_t defines two pointer function members to which the client
application may optionally provide HAL functions to initialize these resources, *hw_open_t and *hw_close_t. If the client application
provides valid functions via these function pointers, the DAC initialization APIs Error! Reference source not found. and ad917x_deinit
shall call hw_open_t and *hw_close_t respectively to handle the initialization and shutdown of required hardware resources. If the client
application chooses not use this feature, the AD917x API assumes that SPI and all the external resources for the AD917x DAC are
available.

The DAC API libraries require limited access to hardware interfaces on the target platform. These are depicted in Figure 3.

Page 10 of 87

Platform

Processor DAC

sl | 1 [m

Figure 3 Hardware Controls Required By DAC APl HAL
SPI Access

Access to the SPI controller that communicates with the AD917x DAC devices is required for correct operation of the API. The API
requires access to a SPI function that can send SPI commands. This function *spi_xfer_t is defined in detail in the next section. The DAC
SPI requires 15 bit addressing with 8-bit data bytes. The AD917x DAC SPI interface supports 3 wire or 4 wire and the AD917x DAC must
be configured as such to match the platform implementation. This is done during initialization via the Error! Reference source not found.
APL Please refer to the target ADI device datasheet for full details of the SPI Interface protocol

RESETB Pin Access
Optionally access to the function that controls the AD917x DAC RESETB pin can be included in the HAL layer. This function if provided

allows the API to implement a hardware reset rather than a software reset.

The HAL function *reset_pin_ctrl_t is defined in detail in the next section. Please refer to the target ADI device datasheet for full details
on the RESETB pin hardware connections.

System Software Functions

Delay Function

For best performance, it is recommended to provide the API access to the client application’s delay function. The delay function can be a wait or
sleep function depending on the client application. This function allows the API to wait the recommended microsecond between initialization
steps.

The HAL function * delay_us_t is defined in detail in the next section.

Page 11 of 87

AD917x API Specification Rev 1.1

HAL FUNCTION POINTER DATATYPES
*HW_OPEN_T
Description

Function pointer definition to a client application function that implements platform hardware initialization for the AD917x
Device.

This function may initialize external hardware resources required by the AD917x Device and API for correct functionality as
per the target platform. For example, initialization of SPI, GPIO resources, clocks etc.

If provided, this function shall be called during the DAC module initialization via API ad917x_init. The API will then assume
that all require external hardware resources required by the DAC are configured and it is safe to interact with the DAC device.

Synopsis

typedef void(*hw_open_t)(void *user_data);
Preconditions

Unknown- Platform Implementation.
Post conditions

It is expected that all external hardware and software resources required by the DAC API are now initialized appropriately and
accessible by the DAC APL

Dependencies

Unknown- Platform Implementation

Parameters
user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to open the hardware for the ADI Device.
Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes

This function is not required to integrate the API. It is an optional feature that may be used by the client application.

Page 12 of 87

*HW_CLOSE_T
Description
Function pointer to function that implements platform hardware de-initialization for the AD917x Device

This function shall close or shutdown external hardware resources required by the AD917x Device and API for correct
functionality as per the target platform. For example, initialization of SPI, GPIO resources, clocks etc.

It should close and free any resources assigned in the hw_open_t function. This function if provided shall be called during the
DAC module de-initialization via API ad917x_deinitError! Reference source not found. . The API will then assume that all
require external hardware resources required by the DAC are no longer available and it is not-safe to interact with the DAC
device.

Synopsis
typedef void(*hw_close_t)(void *user_data);
Preconditions

It is expected that there are no pre-conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters
user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to close the hardware for the ADI Device.
Return value

Zero shall indicate success.
Any other positive integer value may represent an error code to be returned to the application.
Notes

This function is not required to integrate the API. It is an optional feature that may be used by the client application.

Page 13 of 87

AD917x API Specification Rev 1.1

*SPI_XFER_T
Description
Function to implement a SPI transaction to the DAC device.

This function shall perform send a read/write SPI command to targeted ADI DAC device. The SPI implementation shall
support 15-bit addressing and 8-bit data bytes. This function shall control the SPI interface including the appropriate chip select
to correctly send and retrieve data to the targeted ADI DAC device over SPI.

The implementation may support 3-wire or 4-wire mode. The DAC API must be configured to support the platform
implementation this is done during the DAC initialization API Error! Reference source not found. .

Once a DAC device is initialized via the Error! Reference source not found. AP, it is expected that the API may call this function
at any time.

Synopsis
typedef int(*spi_xfer_t)(void *user_data, uint8_t *indata, uint8_t *outdata, int size_bytes);

Preconditions

It is expected that there are no pre-conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) Error! Reference source not found.. Once a DAC device is initialized via the Error! Reference source not found.
API, it is expected that the API may call this function at any time.

Post conditions

It is expected that there are no post conditions to this function.

Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function
via this parameter.

indata pointer to a uint8_t array with the data to be sent on the SPI
outdata pointer to a unit8_t array to which the data from the SPI device will be written

size_bytes an integer value indicating the size in bytes of both indata and outdata arrays.

Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.
Notes

indata and outdata arrays shall be the same size.

Page 14 of 87

*TX_EN_PIN_CTRL_T
Description
Function to implement set the TX_ENABLE pin of the DAC device high or low.
Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call this function at any time.
Synopsis
typedef int(*tx_en_pin_ctrl_t)(void *user_data, uint8_t enable);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init. Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call
this function at any time.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters
user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function
via this parameter.
enable A uint8_t value indicating the desired enable/disable setting for the tx_enable pin.
A value of 1 indicates TX_ENABLE pin is set HIGH.
A value of 0 indicates TX_ENABLE pin is set LOW.
Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes

This function is not required to integrate the APL It is an optional feature that may be used by the client application should the
user which to control the pin via the APIL

Page 15 of 87

AD917x API Specification Rev 1.1

*RESET_PIN_CTRL_T
Description

Function to implement set the RESETB pin of the DAC device high or low.
Synopsis

typedef int(*reset_pin_ctrl_t)(void *user_data, uint8_t enable);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init. Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call

this function at any time.
Post conditions

It is expected that there are no post conditions to this function.

Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function via this

parameter.
enable A uint8_t value indicating the desired enable/disable setting for the tx_enable pin.
A value of 1 indicates RESETB pin is set HIGH.
A value of 0 indicates RESETB pin is set LOW.
Return value
Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes
This function is not required to integrate the API. It is an optional feature that may be used by the client application should the
user which to control the pin via the API. The relevant API function is ad917x_reset.

Page 16 of 87

*DELAY_US_T
Description
Function to implement a delay for specified number of microseconds.

Any timer hardware initialization required for the platform dependent implementation of this function must be performed
prior to providing to calling any DAC APIs.

Once a DAC device is initialized via the ad917x_init AP]I, it is expected that the API may call this function at any time.
Synopsis

typedef int(*delay_us_t)(void *user_data, int us);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad917x_init. Once a DAC device is initialized via the ad917x_init API, it is expected that the API may call
this function at any time.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the delay for the ADI Device.

int us time to delay/sleep in microseconds
Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes
This is required for optimal performance.

Performs a blocking or sleep delay for the specified time in microseconds.

Page 17 of 87

AD917x API Specification Rev 1.1

ADI APl ENUMERATIONS DATATYPES
The following are a list of enumerations and datatypes that are common to and used by ADI APIs libraries including the AD917x APL

They are defined in adi_defh

ADI_CHIP_ID_T
Description
A structure detailing the AD917x Device Identification Data. Please refer to the specific DAC Data sheet for expected values.
Synopsis
#include api_def.h
typedef struct {
uint8_t chip_type;
uintl6_t prod_id;
uint8_t prod_grade;
uint8_t dev_revision;

}adi_chip_id_t;

Fields
uint8_t chip_type Chip Type
uintl6_t prod_id Product ID code
uint8_t prod_grade Product Grade
uint8_t dev_revision Silicon Revision.
Notes

Product ID and product grade are only available after initialization.

Page 18 of 87

SIGNAL_TYPE_T
Description
A enumeration defining various signal types such as CMOS or LVDS.
Synopsis
#include api_def.h
typedef enum
{
SIGNAL_CMOS =0,
SIGNAL_LVDS,
SIGNAL_UNKNOWN
Jsignal_type_t;

Fields
SIGNAL_CMOS CMOS TYPE Signal
SIGNAL_LVDS LVDS Type Signal
SIGNAL_UNKNOWN Undefined Signal Type
Notes

Page 19 of 87

AD917x API Specification Rev 1.1

SIGNAL_COUPLING_T
Description
An enumeration defining AC and DC coupling modes.
Synopsis
#include api_def.h
typedef enum
{
COUPLING_AC =0,
COUPLING_DC,
COUPLING_DC
Jsignal_coupling_t;

Fields
COUPLING_AC AC Coupled Signal
COUPLING_DC DC Coupled Signal
COUPLING_DC Undefined coupling Signal
Notes

Page 20 of 87

JESD_LINK_T

Description

Synopsis

Fields

Notes

An enumeration of JESD Links available supported on the device.

#include api_def.h

typedef enum {
JESD_LINK_0 = 0x0,
JESD_LINK 1 = 0x1,
JESD_LINK_ALL = 0xFF

}jesd_link_t;

JESD_LINK_0 JESD Link 0
JESD_LINK 1 JESD Link 1
JESD_LINK_ALL ALL JESD LINKS Available

Page 21 of 87

AD917x API Specification Rev 1.1

JESD_SYNCOUTB_T
Description
An enumeration of JESD SYNCOUTB Signals available on the device.
Synopsis
#include api_def.h
typedef enum {
SYNCOUTB_0 = 0x0, /**<SYNCOUTBO0*/
SYNCOUTB_1 =0x1, /**<SYNCOUTB1*/
SYNCOUTB_0 = 0xFF /**< ALL SYNCOUTB SIGNALS */
}jesd_syncoutb_t;

Fields
SYNCOUTB_0 JESD Link 0 SYNCOUTB Signal
SYNCOUTB_1 JESD Link 1 SYNCOUTB Signal
SYNCOUTB_0 ALL JESD LINKS SYNCOUTB Signals Available
Notes

Page 22 of 87

JESD_SYSREF_MODE_T
Description
An enumeration of JESD SYSREF Signal modes of operation
Synopsis
#include api_def.h
typedef enum {
SYSREF_NONE,
SYSREF_ONESHOT,
SYSREF_CONT,
SYSREF_MON,
SYSREF_MODE_INVLD
}jesd_sysref_mode_t;

Fields
SYSREF_NONE, No SYSREF Support
SYSREF_ONESHOT, ONE-SHOT SYSREF Mode
SYSREF_CONT, Continuous Sysref Synchronisation
SYSREF_MON, SYSREF monitor Mode
SYSREF_MODE_INVLD

Notes

Page 23 of 87

AD917x API Specification Rev 1.1

JESD_PARAM_T
Description
A structure defining the parameters of JESD Interface as per the JESD Specification
Synopsis
#include api_def.h
typedef struct {
uint8_t jesd_L;
uint8_t jesd_F;
uint8_t jesd_M;
uint8_t jesd_S;
uint8_t jesd_HD;
uint8_t jesd_K;
uint8_t jesd_N;
uint8_t jesd_NP;
uint8_t jesd_CF;
uint8_t jesd_CS;
uint8_t jesd_DID;
uint8_t jesd_BID;
uint8_t jesd_LIDO0;
uint8_t jesd_JESDV;
Jjesd_param_t;

Members
jesd_L JESD Lane Param L.
jesd_F JESD Octet Param F.
jesd_M JESD Converter Param M.
jesd_S JESD No of Sample Param S.
jesd_HD JESD High Density Param HD.
jesd_K JESD multiframe Param K.
jesd_N JESD Converter Resolution Param N.
jesd_NP JESD Bit Packing Sample NP.
jesd_CF JESD Param CE
jesd_CS JESD Param CS.
jesd_DID JESD Device ID Param DID.
jesd_BID JESD Bank ID. Param BID
jesd_LIDO JESD Lane ID for Lane 0 Param LIDO
jesd_JESDV JESD Version

Notes

Page 24 of 87

ERROR HANDLING

ERROR CODES

Each API return value represents a DAC API error code. The possible error codes for ADI device APIs are defined by a number of macros
listed in api_errors.h. Table 5 lists the possible error codes and their meanings returned by the AD917x APIs.

If a HAL function, called by during the execution of an API, returns a non-zero value the API shall return an error code indicating that
there was an error returned from a HAL function. Table 6 lists the possible errors returned by API due to a HAL function.

Table 5 API Error Code Macro definitions.

ERROR CODE

Description

API_ERROR_OK

API completed successfully

API_ERROR_SPI_SDO

API could not complete success fully due to SPI_SDO configuration in API Handle

API_ERROR_INVALID_HANDLE_PTR

API could not complete success fully due to invalid pointer to APl Handle

API_ERROR_INVALID_XFER_PTR

API could not complete success fully due to invalid pointer to SPI transfer function

API_ERROR_INVALID_DELAYUS_PTR

API could not complete success fully due to invalid pointer to Delay function

API_ERROR_INVALID_PARAM

API could not complete successfully due to invalid APl parameter

API_ERROR_FTW_LOAD_ACK

API could not complete successfully due to Frequency Turning Word No-ACK

API_ERROR_NCO_NOT_ENABLED

API could not complete successfully due to NCO not currently Enabled

API_ERROR_INIT_SEQ_FAIL

API could not complete successfully due to NVRAM load error.

Table 6 API HAL function Error Code Macro definitions.

ERROR CODE

Description

API_ERROR_SPI_XFER

SPI HAL function return an error during the implementation of this API

API_ERROR_US_DELAY

DELAY HAL function return an error during the implementation of this API

API_ERROR_TX_EN_PIN_CTRL

TX_ENABLE pin ctrl HAL function return an error during the implementation of this API

API_ERROR_RESET_PIN_CTRL

RESET pin ctrl HAL function return an error during the implementation of this API

API_ERROR_EVENT_HNDL

EVENT Handle HAL function return an error during the implementation of this API

API_ERROR_HW_OPEN

HW Open HAL function returned an error during the implementation of this API

API_ERROR_HW_CLOSE

HW Close HAL function returned an error during the implementation of this API

Page 25 of 87

AD917x API Specification Rev 1.1

AD917X API LIBRARY

Page 26 of 87

AD917X AP1 REFERENCE HANDLE

AD917X_HANDLE_T
Description

DAC Device reference handle data structure that acts a software reference to a particular instance to of the DAC device. This
reference maintains a reference to HAL functions and the configuration status of the chip.

Synopsis
#include AD917x.h
typedef struct {
void *user_data;
spi_sdo_config_t sdo;
signal_type_t syncoutb;
signal_coupling t sysref;
uint64_t dac_freq_hz;
spi_xfer_t dev_xfer;
delay_us_t delay_us;
tx_en_pin_ctrl_t tx_en_pin_ctrl;
reset_pin_ctrl_t reset_pin_ctrl;
hw_open_t hw_open;
hw_close_t hw_close;
1ad917x_handle_t;
Members
void *user_data;

A void pointer that acts a container structure for client application data to be provided to the HAL functions. The
client application must define this structure as per its platform requirements. This pointer shall be passed as the
parameter to the *hw_open_t and *hw_close_t function calls to pass any client application specific data. The DAC API

shall not access this data directly. The client application must initialize this member appropriately prior to calling any
DAC API function.

spi_sdo_config t sdo;
This member hold the desired SPI interface configuration, 3-wire or 4-wire, for the AD917x DAC in the client system.

spi_sdo_config_t enumerates this configuration and is defined in api_def.h. This member should be correctly
configured prior to calling ad917x_init in order to ensure SPI access to the AD917x.

signal_type_t syncoutb;
This member holds the desired SYNCOUTB signal type, CMOS or LVDS for the AD917x DAC in the client system.
Signal_type_t enumerates the possible signal types and is defined in api_def.h.

This member should be configured prior to calling ad917x_init and ad917x_reset in order to sure correct operation
for the target hardware.

signal_coupling t sysref;

This member holds the desired sysref signal coupling mode AC or DC coupling for the AD917x DAC in the client
system.

signal_coupling t

Enumerates the possible signal types and is defined in api_def.h.

Page 27 of 87

AD917x API Specification Rev 1.1

This member should be configured prior to calling ad917x_init and ad917x_reset in order to sure correct operation
for the target hardware.

uint64_t dac_freq_hz;
This member holds the frequency of the DAC CLK provided to the AD917x DAC in the target system.

It is important to configure this variable correctly prior to configuring the AD917x with operational modes such as
NCO, JESD and data path as this value is used as reference for internal

This value should be access via the ad917x _set_dac_clk_frequency API and the ad917x_get_dac_clk_frequency.
spi_xfer_t dev_xfer;

A function pointer to the client application defined SPI HAL function.

Refer to *spi_xfer_t section for a detailed definition of this function.

The client application must initialize this member appropriately prior to calling any DAC API function.
delay_us_t delay_us;

A function pointer to the client application defined microsecond delay HAL function.

Refer to * delay_us_t section for a detailed definition of this function.

The client application must initialize this member appropriately prior to calling any DAC API function.

tx_en_pin_ctrl_t tx_en_pin_ctrl;
A function pointer to the client application’s implementation of TX_ENABLE pin control function.

Refer to * tx_en_pin_ctrl_t section for a detailed definition of this function.

reset_pin_ctrl_t reset_pin_ctrl;

A function pointer to the client application’s implementation of RESETB pin control function, refer to
*reset_pin_ctrl_t section for a detailed definition of this function.

hw_open_t hw_open;
A function pointer to the client application HAL resources initialization function.
Refer to *hw_open_t section for a detailed definition of this function.

hw_close_t hw_close;
A function pointer to the client application HAL resources de-initialization function.

Refer to *hw_close_t section for a detailed definition of this function.

Page 28 of 87

AD917X API DEFINITIONS, DATA STRUCTURES AND ENUMERATIONS

This section describes all the structures and enumerations defined by the DAC API interface.

AD917X_DDS_SELECT_T
Description

An enumeration of the Direct Digital Synthesis Blocks within the AD917x Device.
Synopsis

#include AD917x.h

typedef enum {
AD917X_DDSM = 0,
AD917X DDSC =1
lad917x_dds_select_t;
Fields
AD917X_DDSM Main DAC Datapath DDS
AD917X_DDSC Channel Datapath DDS
Notes

Page 29 of 87

AD917x API Specification Rev 1.1

AD917X_DAC_SELECT_T
Description

An enumeration of the DACs within the AD917x Device, used to select or target a DAC.
Synopsis

#include AD917x.h

typedef enum {

AD917X_DAC_NONE = 0,

AD917X _DACO0 =1,

AD917X_DACI =2
}ad917x_dac_select_t;

Fields
AD917X_DAC_NONE No DAC
AD917X_DACO DACO
AD917X_DACI1 DAC1
Notes

Page 30 of 87

AD917X_CHANNEL_SELECT_T
Description
An enumeration of the Channelizers within the AD917x Device, used to select or target a Channelizer.
Synopsis
#include AD917x.h
typedef enum {
AD917X_CH_NONE = 0,
AD917X_CH_0 = BIT(0),
AD917X_CH_1 = BIT(1),
AD917X_CH_2 = BIT(2),
AD917X_CH_3 = BIT(3),
AD917X_CH_4 = BIT(4),
AD917X_CH_5 = BIT(5)
1ad917x_channel_select_t;

Fields
AD917X_CH_NONE No Channel
ADY917X_CH_0 Channel 0
AD917X_CH_1 Channel 1
AD917X_CH_2 Channel 2
AD917X _CH_3 Channel 3
AD917X CH_4 Channel 4
AD917X CH_5 Channel 5

Notes

Page 31 of 87

AD917x API Specification Rev 1.1

AD917X _JESD_LINK_STAT_T
Description

A structure of the JESD Interface link Status
Synopsis

#include AD917x.h

typedef struct {
uint8_t code _grp_sync_stat;
uint8_t frame_sync_stat;
uint8_t good_checksum_stat;
uint8_t init_lane_sync_stat;

}ad917x_jesd_link_stat_t;

Members
uint8_t code _grp_sync_stat;

A uint8_t bit wise representation of Code Group Sync Status for all JESD Lanes. Where bit 0 represents CGS status for
Lane 0 and bit 1 represents CGS status for Lane 1 etc. A value of 1 indicates CGS status is complete, a value of 0
indicates CGS failed.

uint8_t frame_sync_stat;

A uint8_t bit wise representation of Frame Sync Status for all JESD Lanes. Where bit 0 represents Frame Sync status for
Lane 0 and bit 1 represents Frame Sync status for Lane 1 etc. A value of 1 indicates Frame Synchronization status is
complete, a value of 0 indicates Frame Synchronization failed.

uint8_t good_checksum_stat;

A uint8_t bit wise representation of Good Checksum Status for all JESD Lanes. Where bit 0 represents Checksum
status for Lane 0 and bit 1 represents checksum status for Lane 1 etc. A value of 1 indicates valid checksum status, a
value of 0 indicates checksumfailed.

uint8_t init_lane_sync_stat;

A uint8_t bit wise representation of Initial Lane Synchronization Status for all JESD Lanes. Where bit 0 represents Lane
Synchronization status for Lane 0 and bit 1 represents Lane Synchronization status for Lane 1 etc. A value of 1
indicates Lane Synchronization completed, a value of 0 Lane Synchronization failed.

Notes

Page 32 of 87

AD917X_JESD_SERDES_PLL_FLG_T
Description

An enumeration of the SERDES PLL Status flags.
Synopsis

#include AD917x.h

typedef enum

{
AD917x_PLL_LOCK_STAT = 0x1,

AD917x_PLL_REG_RDY= 0x2,

AD917x_PLL _CAL_STAT=0x4,

AD917x_PLL_LOSSLOCK=0x8
}ad917x_jesd_serdes_pll_flg t;

Members
AD917X_PLL_LOCK_STAT SERDES PLL lock Status Flag. When set the PLL is locked.
AD917X PLL REG_RDY SERDES PLL Regulator RDY Status Flag.
AD917X_PLL _CAL_STAT SERDES PLL VCO Calibration Status Flag.
AD917X_PLL_LOSSLOCK SERDES PLL Upper Calibration Threshold flag.

Notes

Page 33 of 87

AD917x API Specification Rev 1.1

AD917X APIS

AD917X_INIT

Description
API to initialize the DAC Module
This API must be called first before any other API calls. It performs internal API initialization of the memory and API states.

If DAC API handle member hw_open is not NULL the function to which it points shall be called to initialize DAC external
resources. For example GPIO, SPI etc.

This function shall complete any universal initialization configuration of the DAC such as SPIL
Synopsis

#include AD917x.h

ADI_API int ad917x_init(ad917x_handle_t *h);

Parameters
ad917x_handle_t *h
Pointer to the client application DAC API handle for the target DAC device
Refer to API Handle section for more details.
Preconditions
If hw_open function pointer is set to NULL. DAC external hardware resources must be initialized.
Post conditions
On successful completion, DAC Module shall be in initialized state, ready for configuration.

Note although the API is now initialized, it is recommended to call the ad917x_reset API immediately after a call to
Ad9172_init API to ensure all SPI register setting are restore to default and ADI recommendations.

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t for full details.
h->hw_open DAC API handle optionally may be set to valid hardware initialization function for client application. Refer
to*hw_open_t. for full details.
Return value

Any other positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM
API_ERROR_HW_OPEN_FAILED
API_ERROR_INIT_SEQ_FAIL
API_ERROR_SPI_SDO

Notes

Page 34 of 87

AD917X_DEINIT

Description
Shutdown the DAC Module
This API must be called last. No other API should be called after a call to this API.

It performs internal API initialization of the memory and API states and ensure targeted DAC is in good state for power down.
If DAC API handle member *hw_close_t is not NULL the function to which it points shall be called to de-initialize DAC
external resources. This function may be used to de-initialize and release and hardware resources required by the API and
AD917x Device, for example GPIO SPI etc.

Synopsis
#include AD917x.h

ADI_API int ad917x_deinit(ad917x_handle_t *h);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.

Post conditions
On successful completion, DAC Module shall be in shutdown state.

DAC module shall need to be re-initialized via ad917x_init by client application before any further use.

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.
h->hw_close DAC API handle optionally may be set to valid hardware initialization function for client application. Refer
to*hw_close_t.
Return value

Any positive integer value may represent an error code to be returned to the application.

Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK

API_ERROR_INVALID_XFER_PTR

API_ERROR_INVALID_HANDLE_PTR

Notes

Page 35 of 87

AD917x API Specification Rev 1.1

AD917X_RESET

Description

Performs a full reset of AD917x DAC, resetting all SPI registers to their default values, restoring the desired SPI configuration
and ADI recommended initialization sequence.

This API can trigger a software reset via a SPI control or trigger a hardware reset by toggling the RESETB hardware pin. In order
to trigger a hardware reset the API must be provided with a client defined HAL function, *reset_pin_ctrl_t, that
provides the API with control over the RESETB pin on the client application.

The type of reset triggered by the API is determined by the hw_reset parameter.

Synopsis
#include AD917x.h
ADI_API int ad917x_reset(ad917x_handle_t *h, uint8_t hw_reset);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t hw_reset a uint8_t value to indicate the type of reset to be triggered.
A value of 1 indicates a hardware reset is to be triggered.
A value of 0 indicates a soft reset is to be triggered.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_initAPI. Prior to using this function.
Post conditions
The DAC shall be fully reset followed with reconfiguration of SPI interface and ADI recommended initialization sequence.
Dependencies
h->dev_xfer.
DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.
h->reset_pin_ctrl_t.

If hw reset is desired as indictated by the API parameter hw_reset the DAC API handle must be initialized to valid
function that controls the RESETB for the client application. Refer to *reset_pin_ctrl_t.

Return value
Any positive integer value may represent an error code to be returned to the application
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_SPI_SDO
API_ERROR_INVALID_XFER_PTR

Notes

Page 36 of 87

AD917X_GET_CHIP_ID

Description

API to retrieve ADI chip identification, product type and revision data.
Synopsis

#include AD917x.h

ADI_API int ad917x_get_chip_id(ad917x_handle_t *h, adi_chip_id_t *chip_id);
Parameters

ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

adi_chip_id_t *chip_id Pointer to a variable of type adi_chip_id_t to which the Device Identification data shall be
stored.

Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 37 of 87

AD917x API Specification Rev 1.1

AD917X _SET_DAC_CLK_FREQUENCY

Description

Set the API software reference for the value of the hardware DAC clock supplied to the DAC device.

The correct value must be supplied for correct operation of the DAC features.
Synopsis

#include AD917x.h

ADI_API int ad917x_set_dac_clk_frequency(ad917x_handle_t *h, uint64_t dac_clk_freq_hz);
Parameters

ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.

Refer to API Handle section for more details.

uint64_t dac_clk_freq_hz DAC clock frequency in Hz. DAC Clock Frequency range is 2.9 GHz to 12GHz
for AD9172 and AD9173.
DAC CLK Frequency range is 2.9 GHz to 6GHz for AD9171.

Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 38 of 87

AD917X_GET_DAC_CLK_FREQUENCY

Description
Set the API software reference for the value of the hardware DAC clock supplied to the DAC device.
The correct value must be supplied for correct operation of the DAC features.
Synopsis
#include AD917x.h
ADI_API int ad917x_get_dac_clk_frequency(ad917x_handle_t *h, uint64_t *dac_clk_freq_hz);
Parameters
ad917x_handle_t *h
Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint64_t *dac_clk_freq_hz

Pointer to a uint64_t variable where the current DAC clock frequency value setting shall be stored.
The frequency value shall be provided in Hz. DAC clock frequency in Hz.

DAC Clock Frequency range is 2.9 GHz to 12GHz for AD9172 and AD9173.
DAC CLK Frequency range is 2.9 GHz to 6GHz for AD9171.
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 39 of 87

AD917x API Specification Rev 1.1

AD917X_SET_DAC_PLL_CONFIG

Description

The AD917x may be configured to use a clock directly applied to the device as the DAC clock or may generate a DAC clock
using the on chip PLL.

This API allows enabling of on-chip PLL direct configuration of the on-chip PLL parameters.
This API should be used in conjunction with ad917x_set_dac_clk_frequency
Synopsis
#include AD917x.h
ADI_API int ad917x_set_dac_pll_config(ad917x_handle_t *h, uint8_t dac_pll_en,

uint8_t m_div, uint8_t n_div, uint8_t vco_div);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t dac_pll_en Enable for internal DAC Clock generation.

If set, ref_clk_freq_khz must be set with value of reference clock applied by the system.

0 - Do not generate DAC CLK internally.
1 - Generate DAC CLK internally

uint8_t m_div Reference Clock Pre-divider. Where
M_DIVIDER = Ceiling (Fref_clk_mhz/500 MHz)
Valid Range 1 to 4

uint8_t n_div VCO Feedback Divider Ratio. Where
N_DIVIDER = Fvco * M_DIVIDER/(8 * Fref_clk)
Valid Range 2 -50

uint8_t veo_div Required VCO Divider for the Desired DAC CLK, where
Fdac = Fvco/VCO_DIVIDER
Valid range 1-3

Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.

Post conditions

This API will configure the on chip PLL parameters for a particular dac clk frequency. The user must call the
ad917x_set_dac_clk_frequency API to update API with the desired dac frequency.

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.

API_ERROR_OK

Page 40 of 87

API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes
The on-chip PLL may not be able to generate all supported DAC Clocks. A directly applied DAC clock may be required.

The AD917x datasheet should be consulted for full details of the capabilities. API_ERROR_INVALID_PARAM shall be
returned if one of the parameters are outside the range of the PLL.

Page 41 of 87

AD917x API Specification Rev 1.1

AD917X_GET_DAC_CLK_STATUS

Description

Get DAC CLK Status.
Synopsis

#include AD917x.h

ADI APl int ad917x_get_dac_clk_status(ad917x_handle_t *h, uint8 t *pll_lock_stat, uint8_t *dll_lock_stat);
Parameters

ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.

Refer to API Handle section for more details.

uint8_t *pll_lock_stat DAC PLL Lock Status
0 - DAC PLL Not Locked.
1- DAC PLL Locked.
uint8_t *dll_lock_stat DAC PLL Lock Status
0 - DAC PLL Not Locked.
1- DAC PLL Locked.
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 42 of 87

AD917X_SET_DAC_CLK

Description

Synopsis

Configure the DAC Clock Input path based on a desired DAC clock frequency, the applied reference clock and the on-chip PLL.

The AD917x may be configured to use a clock directly applied to the device as the DAC clock or may generate a DAC Clock
using the clock applied by the system as a reference.

This function shall calculate and apply the required on-chip PLL configuration based on the desired DAC clock frequency and
the applied reference clock frequency.

This function may be used instead of the following two APIs ad917x_set_dac_pll_config and ad917x_set_dac_clk_frequency.

#include AD917x.h
ADI APl int ad917x_set_dac_clk(ad917x_handle_t *h, uint64_t dac_clk_freq_hz,
uint8_t dac_pll_en, uint64_t ref clk_freq_hz);

Parameters

ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

uint64_t dac_clk_freq_hz Desired DAC Clk Frequency in Hz.

DAC Clock Frequency range is 2.9 GHz to 12GHz for AD9172 and AD9173. DAC CLK Frequency
range is 2.9 GHz to 6GHz for AD9171.

uint8_t dac_pll_en Enable for internal DAC PLL
uint64_t ref clk_freq_hz Value of reference clock frequency applied to AD917x. Set to 0 if DAC CLK is applied to the pin.

Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.

Post conditions

None

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value

Notes

Any positive integer value may represent an error code to be returned to the application

Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK

API_ERROR_INVALID_HANDLE_PTR

API_ERROR_INVALID_XFER_PTR

API_ERROR_INVALID_PARAM

The on-chip PLL may not be able to generate all supported DAC Clocks. A directly applied DAC clock may be required.

The AD917x datasheet should be consulted for full details of the capabilities. API_ERROR_INVALID_PARAM shall be
returned if one of the parameters are outside the range of the PLL.

Page 43 of 87

AD917x API Specification Rev 1.1

AD917X_SET_CLKOUT_CONFIG

Description

The AD917x DAC provides an output clock signal generated from the DAC clk via the CLKOUT pin. This API set s CLKOUT
signal configuration.

Synopsis
#include AD917x.h
ADI_API int ad917x_set_clkout_config(ad917x_handle_t *h, uint8_t1_div);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t 1_div Output clock divider setting. Valid range 1 to 4.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 44 of 87

AD917X_SET_PAGE_IDX

Description
Select Page
Synopsis
#include AD917x.h
ADI APl int ad917x_set_page_idx(ad917x_handle_t *h, const unsigned int dac, const unsigned int channel);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
unsigned int dac DAC number.
unsigned int channel Channel number.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 45 of 87

AD917x API Specification Rev 1.1

AD917X_GET_PAGE_IDX

Description
Get Page index
Synopsis
#include AD917x.h
ADI_API int ad917x_get_page_idx(ad917x_handle_t *h, int *dac, int *channel);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
int *dac Pointer to the DAC number.
int *channel Pointer to the Channel number.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 46 of 87

AD917X_SET_CHANNEL_GAIN

Description

Sets the scalar channel gain value. It is paged by CHANNEL_PAGE in Reg08
Synopsis

#include AD917x.h

ADI_API int ad917x_set_channel_gain(ad917x_handle_t *h, const uint16_t gain);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uintl6_t gain Gain value.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 47 of 87

AD917x API Specification Rev 1.1

AD917X_GET_CHANNEL_GAIN

Description
Sets the scalar channel gain value. It is paged by CHANNEL_PAGE in Reg08
Synopsis
#include AD917x.h
ADI_API int ad917x_get_channel_gain (ad917x_handle_t *h, const uint16_t *gain);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uintl6_t *gain Pointer to the gain value.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 48 of 87

AD917X_SET_DC_CAL_TONE_AMP

Description

Sets the DC tone amplitude. This amplitude goes to both I and Q paths. It is paged by CHANNEL_PAGE in Reg08
Synopsis

#include AD917x.h

ADI_API int ad917x_set_dc_cal_tone_amp(ad917x_handle_t *h, const uint16_t amp);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uintl6_t amp Calibration tone amplitude.
Preconditions

The DAC device shall be success fully initialized via a call to ad917x_init prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 49 of 87

AD917x API Specification Rev 1.1

AD917X_DDSM_CAL_DC_INPUT_SET

Description
Set Main DAC Cal DC Input
Synopsis
#include AD917x.h
ADI_API int ad917x_ddsm_cal_dc_input_set(ad917x_handle_t *h, int ddsm_cal_dc_input_en);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
int ddsm_cal_dc_input_en Enable flag:
0 - Disabled
1 - Enabled
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 50 of 87

AD917X_DDSM_CAL_DC_INPUT_GET

Description
Get Main DAC Cal DC Input
Synopsis
#include AD917x.h
ADI APl int ad917x_ddsm_cal_dc_input_get(ad917x_handle_t *h, int *ddsm_cal_dc_input_en);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
int *ddsm_cal_dc_input_enPointer to integer, where the result will be stored
0 - Disabled
1 - Enabled
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 51 of 87

AD917x API Specification Rev 1.1

AD917X_DC_TEST_TONE_SET

Description
Set DC Test Tone enable status
Synopsis
#include AD917x.h
ADI_API int ad917x_dc_test_tone_set(ad917x_handle_t *h, int dc_test_tone_en);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
int dc_test_tone_en Enable flag
0 - Disabled
1 - Enabled
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init APL
Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 52 of 87

AD917X_DC_TEST_TONE_GET

Description
Set DC Test Tone enable status
Synopsis
#include AD917x.h
ADI_API int ad917x_dc_test_tone_get(ad917x_handle_t *h, int *dc_test_tone_en);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
int *dc_test_tone_en Pointer to integer, where the result will be storred
0 - Disabled
1 - Enabled
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init APL Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 53 of 87

AD917x API Specification Rev 1.1

AD917X_NCO_CHANNEL_FREQ_GET

Description
Get a Channel NCO frequency in Hz
Synopsis
#include AD917x.h
ADI_API int ad917x_nco_channel_freq_get(ad917x_handle_t *h, ad917x_channel_select_t channel,
int64_t *carrier_freq_hz);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.

Refer to API Handle section for more details.

ad917x_channel_select_t channel
Channel number
AD917x_CH_0 - Channel 0 NCO
AD917x_CH_1 - Channel 1 NCO
AD917x_CH_2 - Channel 2 NCO
AD917x_CH_3 - Channel 3 NCO
AD917x_CH_4 - Channel 4 NCO
AD917x_CH_5 - Channel 5 NCO

int64_t *carrier_freq_hz Pointer to 64 bit integer, where the result frequency will be stored
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 54 of 87

AD917X_NCO_MAIN_FREQ_GET

Description
Get a Main DAC NCO frequency in Hz
Synopsis
#include AD917x.h
ADI_API int ad917x_nco_main_freq_get(ad917x_handle_t *h, ad917x_dac_select t dac,
int64_t *carrier_freq_hz);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
ad917x_dac_select_t dac Main data path DAC NCO select. Can be only one of:
AD917x_DACO - DACO NCO select
AD917x_DACI - DAC1 NCO select
int64_t *carrier_freq_hz Pointer to 64 bit integer, where the result frequency will be stored
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init APL Prior to using this function.
Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 55 of 87

AD917x API Specification Rev 1.1

AD917X_JESD_CONFIG_DATAPATH

Description

Configure the JESD DAC mode as per the desired JESD interface parameters and datapath, the DAC clk frequency and the
interpolation rate.

The JESD lane rate for the configuration is calculated and returned via the lane_rate_ MBPS parameter.

The API shall check the parameter values and return an error if the desired JESD interface is not supported for the desired DAC
mode. Refer to the DAC datasheet for full details on the JESD configurations and DAC modes supported.

Synopsis
#include AD917x.h
ADI_API int ad917x_jesd_config_datapath(ad917x_handle_t *h, uint8_t dual_en,
uint8_t jesd_mode, uint8_t ch_intpl, uint8_t main_intpl);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t dual_en Dual Link enable setting

0 - Single Link Mode
1 - Dual Link Mode
uint8_t jesd_modeThe desired value of the pre-definded JESD link modes supported by the AD917x.

Valid range 0 to 21. Based on this value the AD917x JESD interface shall be configured as per one
of the supported JESD parameter configurations. Refer to the user guide for full details on the
modes and the corresponding JESD settings.

uint8_t ch_intpl The desired channel interpolation.
uint8_t main_intpl The desired main dac data path interpolation.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init. API prior to using this function.

Post conditions

The DAC device will set a bit to indicate if this configuration is valid/supported mode. Use ad917x_jesd_get_cfg_status API to
verify the configuration validity.

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

h->dac_freq_hz DAC Clock value must be initialized to the correct value as per the hardware setting for correct operation of
this APL.

Refer to ad917x_handle_t for more details on dac_freq_hz
Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR

Page 56 of 87

API_ERROR_INVALID_PARAM

AD917X_JESD_GET_CFG_PARAM

Description

API to return the all the current JESD Parameters.
Synopsis

#include AD917x.h

ADI_API int ad917x_jesd_get_cfg_param(ad917x_handle_t *h, jesd_param_t *jesd_param);
Parameters

ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

jesd_param_t *jesd_param Pointer to a structure of type jesd_param_t to which the all the JESD parameters currently
configured will be stored.

Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.

Post conditions

None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.
Return value

Any positive integer value may represent an error code to be returned to the application.

Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK

API_ERROR_INVALID_HANDLE_PTR

API_ERROR_INVALID_XFER_PTR

API_ERROR_INVALID_PARAM

Notes

Page 57 of 87

AD917x API Specification Rev 1.1

AD917X_JESD_SET_SYSREF_ENABLE

Description

Enable AD917x SYSREF +- Pin Input Interface for the target system SYSREF signal
Synopsis

#include AD917x.h

ADI_API int ad917x_jesd_set_sysref enable(ad917x_handle_t *h, uint8_t en)

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t en Enable SYSREF Input Interface
1 - Power Up SYSREF Input
0 - Power Down SYSREF Input
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.
Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 58 of 87

AD917X_JESD_GET_SYSREF_ENABLE

Description

Configure AD917x SYSREF +- Pin Input Interface for the target system SYSREF signal
Synopsis

#include AD917x.h

ADI_API int ad917x_jesd_get_sysref enable(ad917x_handle_t *h, uint8_t *en)

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t *en Pointer to variable to which SYSREF Input Interface Enable status shall be stored
1 - Power Up SYSREF Input
0 - Power Down SYSREF Input
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.
Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM
Notes

Page 59 of 87

AD917x API Specification Rev 1.1

AD917X_JESD_SET_SYNCOUTB_ENABLE

Description
Configure and enable/disable the SYNCOUT_B Output Signal.
Synopsis
#include AD917x.h
ADI_API int ad917x_jesd_set_syncoutb_enable(ad917x_handle_t *h, jesd_syncoutb_t syncoutb, uint8_t en);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
jesd_syncoutb_t syncoutb Target SYNCOUTB Signal.
Valid values defined by ad917x_syncoutb_t
SYNCOUTB_0
SYNCOUTB_1
SYCNOUTB_ALL

uint8_t en Enable/Disable SYNCOUTSB for target SYNCOUTB signal. Range 0 to 1
0 - Disable
1 - Enable
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 60 of 87

AD917X_JESD_GET_CFG_STATUS

Description
Returns JESD Configuration Valid Mode Status.
Synopsis
#include AD917x.h
ADI_API int ad917x_jesd_get_cfg status(ad917x_handle_t *h, uint8_t *cfg_valid);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t *cfg_valid Pointer to a variable in which the Valid JESD
Configuration status shall be stored
0 - Invalid JESD and Interpolation Mode Configured
1 - Valid JESD and Interpolation Mode Configured.
Preconditions

The DAC device shall be success fully initialized via a call to ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 61 of 87

AD917x API Specification Rev 1.1

AD917X_JESD_SET_SCRAMBLER_ENABLE

Description
Enable or Disable the descrambler for the JESD Interface.
Synopsis
#include AD917x.h
ADI_API int ad917x_jesd_set_scrambler_enable(ad917x_handle_t *h, uint8_t en);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8 ten Enable control for JESD Scrambler.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 62 of 87

AD917X_JESD_SET_LANE_XBAR

Description
Configure AD917x Lane Cross Bar to route the physical JESD lanes to the desired logical lanes.
Synopsis
#include AD917x.h
ADI_API int ad917x_jesd_set_lane_xbar(ad917x_handle_t *h, uint8_t physical lane, uint8_t logical lane);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t physical_lane uint8_t value indicating the Physical Lanes to be routed to the serdes logical indicated
by the logical_lane parameter.
uint8_t logical lane uint8_t value indicating the corresponding logical lane for the physical lane listed in
parameter physical_lane.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 63 of 87

AD917x API Specification Rev 1.1

AD917X_JESD_GET_LANE_XBAR

Description

Return the physical to logical lane mapping set by the configured by the current Lane Cross Bar configuration.
Synopsis

#include AD917x.h

ADI_API int ad917x_jesd_get_lane_xbar(ad917x_handle_t *h, uint8 t *phy_log_map);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t phy_log map Pointer a 8 deep uint8_t array.Each element of the array represents the physical lane 0 - 7
and the value represents the logical lane assigned to that physical lane.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 64 of 87

AD917X_JESD_INVERT_LANE

Description
Each logical lane can be inverted which can be used to ease routing of SERDIN signals.
Synopsis
#include AD917x.h
ADI APl int ad917x_jesd_invert_lane(ad917x_handle_t *h, uint8_t logical_lane, uint8_t invert)

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t logical_lane uint8_t value representing the SERDES logical lane for the physical lane indicated by the parameter
physical_lane. Valid values are 0 to 7.
uint8_t invert Desired invert status for the logical lane represented in logical_lane parameter.
Set to 1 to invert.
Set to 0 to de-invert.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
This API shall be called to configure the Lane mapping prior to enabling the JESD link.

Post conditions
None

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 65 of 87

AD917x API Specification Rev 1.1

AD917X_JESD_ENABLE_DATAPATH

Description
Configure power up and enable the AD917x the JESD Interface.
Synopsis
#include AD917x.h
ADI APl int ad917x_jesd_enable_datapath(ad917x_handle_t *h, uint8_t lanes_msk, uint8_t run_cal, uint8_t en);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t lanes_msk A uint8 bit wise value representing the lanes to be enabled on the JESD Interface.
Where bit 0 represents lane 0, bit 1 represents lane 1 etc.
Set to one to enable the respective JESD Lane, set to 0 disable the respective JESD Lane.
uint8_t run_cal Parameter to indicate if JESD equalization routine should be run prior to enabling interface. Set to 1
to run calibration, set to 0 to disable calibration.
uint8_ten Enable control for the JESD interface.
Set to 1 to powerup and enable JESD interface.
Set to 0 to disable JESD interface.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
JESD interface should be successfully configured via ad917x_jesd_config_datapath APL

Post conditions
JESD Datapath is now enable. The status of the JESD PLL can now be verified via

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 66 of 87

AD917X_JESD_GET_PLL_STATUS

Description
Configure power up and enable the AD917x the JESD Interface.
Synopsis
#include AD917x.h
ADI APl int ad917x_jesd_get_pll_status(ad917x_handle_t *h, uint8_t *pll_status);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t *pll_status Pointer to the variable that will be set with the PLL status.
bit[0] => SERDES PLL Lock Status
bit[1] => Regulator Status
bit[2] => Calibration Status
bit[3] => LOSS_LOCK Status
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 67 of 87

AD917x API Specification Rev 1.1

AD917X_JESD_ENABLE_LINK

Description
Configure power up and enable the AD917x the JESD Interface.
Synopsis
#include AD917x.h
ADI APl int ad917x_jesd_enable_link(ad917x_handle_t *h, jesd_link_t link, uint8_t en);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
jesd_link_t link Target Link on which to start JESD Link Bring up Procedure
uint8 ten Enable control for the JESD Link
0 - Enable Link
1 - Disable Link
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions

Link Should now be enabled. Status of the link may verified via ad917x_jesd_get_link_status API.
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 68 of 87

AD917X_JESD_GET_LINK_STATUS

Description
Configure power up and enable the AD917x the JESD Interface.
Synopsis
#include AD917x.h
ADI_API int ad917x_jesd_get_link_status(ad917x_handle_t *h,
jesd_link_t link, ad917x_jesd_link_stat_t *link_status);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
jesd_link_t link Target Link on which to start JESD Link Bring up Procedure

ad917x_jesd_link_stat_t *link_status
Pointer to the variable of type jesd_link_status that will be set with current

jesd link reaback data.

Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API prior to using this function.
Post conditions
Link Should now be enabled
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details.
Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 69 of 87

AD917x API Specification Rev 1.1

AD917X_NCO_SET_FTW

Description

The AD917x family of DAC support a number of NCOs. This API is used to configure a particular NCO with Frequency
Tuning Word, Modulus and Delta parameters.

Synopsis
#include AD917x.h
ADI_API int ad917x_nco_set_ftw(ad917x_handle_t *h, const ad917x_dds_select_t nco, const uint64_t ftw,
const uint64_t acc_modulus, const uint64_t acc_delta);
Parameters

ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

ad917x_dds_select_tnco Channel or Main data path select
AD917x_DDSM - Main data path select
AD917x_DDSC - Channel data path select

uint64_t ftw Frequency tuning word value.
uint64_t acc_modulus Modulus value.
Uint64_t acc_delta Delta value.

Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. . Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_FTW_LOAD_ACK
API_ERROR_INVALID_PARAM

Notes

Page 70 of 87

AD917X_NCO_GET_FTW

Description
Get FTW, ACC and MOD values for the paged NCO. The page should be selected in advance.
Synopsis
#include AD917x.h
ADI_API int ad917x_nco_get_ftw(ad917x_handle_t *h, const ad917x_dds_select_t nco, uint64_t *ftw,
uint64_t *acc_modulus, uint64_t *acc_delta);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
ad917x_dds_select_tnco Channel or Main data path select
AD917x_DDSM - Main data path select
AD917x_DDSC - Channel data path select

uint64_t *ftw Pointer to a variable where the frequency tuning word value will be stored.
uint64_t *acc_modulus Pointer to a variable where the modulus value will be stored
uint64_t *acc_delta Pointer to a variable where the delta value will be stored.

Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

Notes

Page 71 of 87

AD917x API Specification Rev 1.1

AD917X_NCO_SET_PHASE_OFFSET

Description
Sets main datapath and/or channel datapath NCO phase offset.
Synopsis
#include AD917x.h
ADI_API int ad917x_nco_set_phase_offset(ad917x_handle_t *h, const ad917x_dac_select_t dacs, const uint16_t dacs_po,
const ad917x_channel_select_t channels, const uint16_t ch_po);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.
ad917x_dac_select_t dacs DAC number
AD917x_DACO - DACO NCO
AD917x_DACI - DAC1 NCO
uintl6_t dacs_po The phase offset value for the selected DAC(s).
ad917x_channel_select_t channels Channel number
AD917x_CH_0 - Channel 0 NCO
AD917x_CH_1 - Channel 1 NCO
AD917x_CH_2 - Channel 2 NCO
AD917x_CH_3 - Channel 3 NCO
AD917x_CH_4 - Channel 4 NCO
AD917x_CH_5 - Channel 5 NCO.
uintl6_t ch_po The phase offset value for the selected channel(s).
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
Notes

Page 72 of 87

AD917X_NCO_GET_PHASE_OFFSET

Description
Gets main datapath and/or channel datapath NCO phase offset.
Synopsis
#include AD917x.h
ADI_API int ad917x_nco_get_phase_offset (ad917x_handle_t *h, const ad917x_dac_select_t dacs, const uint16_t *dacs_po,
const ad917x_channel_select_t channels, const uint16_t *ch_po);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.
ad917x_dac_select_t dacs DAC number
AD917x_DACO - DACO NCO
AD917x_DACI - DAC1 NCO
uintl6_t *dacs_po The phase offset value for the selected DAC(s).
ad917x_channel_select_t channels Channel number
AD917x_CH_0 - Channel 0 NCO
AD917x_CH_1 - Channel 1 NCO
AD917x_CH_2 - Channel 2 NCO
AD917x_CH_3 - Channel 3 NCO
AD917x_CH_4 - Channel 4 NCO
AD917x_CH_5 - Channel 5 NCO
uintl6_t *ch_po The phase offset value for the selected channel(s).
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
Notes

Page 73 of 87

AD917x API Specification Rev 1.1

AD917X_NCO_ENABLE

Description
Enable/Disable NCOs. Enables only the DACs and Channel NCOs provided as parameters.
All other DACs and Channel NCOs are disabled.
Synopsis
#include AD917x.h
ADI_API int ad917x_nco_enable(ad917x_handle_t *h, const ad917x_dac_select_t dacs,
const ad917x_channel_select_t channels);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.

Refer to API Handle section for more details.

ad917x_dac_select_t dacs DAC(s) to enable
AD917x_DACO - DACO NCO
AD917x_DACI - DAC1 NCO
ad917x_channel_select_t channels Channel(s) to enable
AD917x_CH_0 - Channel 0 NCO
AD917x_CH_1 - Channel 1 NCO
AD917x_CH_2 - Channel 2 NCO
AD917x_CH_3 - Channel 3 NCO
AD917x_CH_4 - Channel 4 NCO
AD917x_CH_5 - Channel 5 NCO
Preconditions
The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
Notes

Page 74 of 87

AD917X_NCO_SET

Description
Set NCO to produce a desired frequency with a desired amplitude.
Synopsis
#include AD917x.h
ADI_API int ad917x_nco_set(ad917x_handle_t *h, const ad917x_dac_select_t dacs,
const ad917x_channel_select_t channels, int64_t carrier_freq_hz,
const uintl6_t amplitude, int dc_test_tone_en,
int ddsm_cal_dc_input_en);
Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.
ad917x_dac_select_t dacs DAC(s) to select
AD917x_DACO - DACO NCO
AD917x_DACI - DAC1 NCO
ad917x_channel_select_t channels Channel(s) to select
AD917x_CH_0 - Channel 0 NCO
AD917x_CH_1 - Channel 1 NCO
AD917x_CH_2 - Channel 2 NCO
AD917x_CH_3 - Channel 3 NCO
AD917x_CH_4 - Channel 4 NCO
AD917x_CH_5 - Channel 5 NCO

int64_t carrier_freq_hz Desired carrier frequency

uint16_t amplitude Desire amplitude.

int dc_test_tone_en Enable Test tone.

int ddsm_cal_dc_input_en Enable DDSM DC input.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer DAC API handle must be initialized to valid SPI transfer function for the client application.

Refer to *spi_xfer_t.

h->dac_freq_hz DAC Clock value must be initialized to the correct value as per the hardware setting for correct operation of
this APL

Refer to dac_freq_hz.
Return value
Any positive integer value may represent an error code to be returned to the application
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.

API_ERROR_OK

Page 75 of 87

AD917x API Specification Rev 1.1

API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

AD917X_REGISTER_WRITE

Description
Performs SPI register write access to DAC
Synopsis
#include AD917x.h
ADI_API int ad917x_register_write (ad917x_handle_t *h, const uint16_t address, const uint8_t data);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
const uintl6_t address, A 15-bit value representing a SPI register location on the target DAC device.
Refer to AD917x data sheet for valid values.
uint8_t *data A pointer to a 8-bit variable to which the register value read over SPI shall be stored.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.

Postconditions
None

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 76 of 87

AD917X_REGISTER_READ

Description

DAC Device reference handle data structure that acts a sw reference to a particular instance to of the DAC device. This reference
maintains a reference to HAL functions and the status of the chip.

Synopsis
#include AD917x.h
ADI_API int ad917x_register_read(ad917x_handle_t *h, const uint16_t address, uint8_t *data);

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
const uintl6_t address, A 15-bit value representing a SPI register location on the target DAC device.
Refer to AD917x data sheet for valid values.
uint8_t *data A pointer to an 8-bit variable to which the register value read over SPI shall be stored.
Preconditions

The DAC device shall be success fully initialized via a call to the ad917x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 77 of 87

AD917x API Specification Rev 1.1

AD917X_GET_REVISION

Description
Get API Revision Data.
Synopsis
#include AD917x.h
ADI_API int ad917x_get_revision (ad917x_handle_t *h, uint8_t *rev_major, uint8_t *rev_minor, uint8_t *rev_rc)

Parameters
ad917x_handle_t *h Pointer to the client application DAC API handle for the target DAC device.
Refer to API Handle section for more details.
uint8_t *rev_major Pointer to a 8 bit variable to which the Major Revision number shall be stored
uint8_t *rev_minor, Pointer to a 8 bit variable to which the Minor Revision number shall be stored
uint8_t *rev_rc Pointer to a 8 bit variable to which the Release Candidate Id shall be stored
Preconditions
None

Post conditions
None
Dependencies

None

Return value
Any positive integer value may represent an error code to be returned to the application.
Refer to Error Codes section for full details. Possible return values for this API error codes are as follows.
API_ERROR_OK
API_ERROR_INVALID_PARAM
Notes

Page 78 of 87

BUILD AND INTEGRATION GUIDE

This section provides an overview of build and integration steps required when using the AD917x API Source code.

As ADI provides the full source code, the user can integrate and build the libraries as per their application and platform requirements.
This section is intended to act as a guide to the provided source code and example build files.

BUILDING THE AD917X API LIBRARY

1. Portthe Source Code
In order to build the AD917x API library the source must be ported from the ADI provided source code package to the target platform.
From the /API folder port the following folders:
/AD917x
/common
/include
2. Building the AD917x Library

Example make-files are provided to build the AD917x API library. It is located in the /API/AD917x folder. The example make-files are
configured for the generation of a static library using the GCC complier on a Linux platform. Make-files may be used as is, or used as a
reference to create make-files for target application platform and tool-chain see debug.mak, release.mak for tool chain and flag options.

/AD917x/makefile
/AD917x/debug.mak
/AD917x/release.mak

INTEGRATING THE AD917X API LIBRARY INTO AN APPLICATION
1. Implement the Hardware Abstraction Functions

The API requires access to a small number of platform specific, hardware and system control functions such as a system delay/sleep
function or SPI bus controller functions, GPI controller. The end user must provide and implement these functions as per the AD917x
API requirements.

These functions prototypes are defined in API/include/api_def.h and are explained in detail in DAC Hardware InitializationError!
Reference source not found. section of this document.

The minimum requirement is to provide the following:
a. A function to implement SPI transaction to the AD917x DAC on the target hardware.
typedef int spi_xfer (void *user_data, uint8_t *indata, uint8_t *outdata, int size_bytes);

b. A function to implement a delay function that will implement a sleep or delay in the order of microseconds to suspend the
execution of APL

int delay_us (void *user_data, unsigned int us);

2. Include the AD917x API Interface headers
The following header files define the interface to the AD917x API and should be included in the application.

a. API/include/AD917x.h
b. APl/include/api_error.h

3. Instantiate AD917x Handler

For each AD917x DAC device, the application must instantiate an AD917x handler reference. Refer to the ad917x_handle_t description
for a full description of the AD917x handler.

Page 79 of 87

AD917x API Specification Rev 1.1

For each handler instantiated by the application, all the require members of the AD917x handler must be initialized prior to calling any
APIs with that handler as parameter. As per the AD917x API specification, the following members are required for correct operation of
the AD917x APIs.

e dev_xfer, Pointer to SPI data transfer function for DAC hardware

e delay_us, Pointer to delay function for DAC hardware

e sdo, Device SPI Interface configuration for DAC hardware

e dac_freq_hz, DAC Clock Frequency configuration
Point handler to SPl and Delay HAL Functions

The members dev_xfer and delay_us must be set to point to the HAL function implemented by the application. (Refer to step one,
Implement the Hardware Abstraction Functions in this list).

Appendix A provides a pseudo code example of how the handler can be instantiated with the hardware abstraction functions.

Set the SPI Interface Configuration

Another member of the handler that must be instantiated correctly is the SPI interface configuration. The hardware SPI interface to the
AD917x device may be 3-wire or 4-wire depending on the target hardware. The handler must be configured appropriated base on the
target application hardware. In the AD917x DAC example application, the handler is instantiated with 4-wire mode as per the AD917x
evaluation platform. Refer to Appendix AError! Reference source not found. to see the handler being instantiated with SPI_SDO value,
meaning 4-wire mode.

4. Setthe DAC CLK Frequency

The AD917x device requires a hardware DAC clock input to the device. The AD917x may be provided directly with the desired DAC
clock or may provide a reference clock and use the on-chip PLL to generated the DAC clock. Refer to AD917x Datasheet for full
configuration options of the DAC clock.

This desired configuration will be determined the application depending on the target platform and application.
The following APIs may be used to configure the AD917x for the desired configuration.

e ad917x_set_dac_clk_frequency
e ad917x_set_dac_pll_config

The desired frequency of the hardware clock input to the DAC must be supplied to the via the dac_freq_hz member of the AD917x
handler. This is done via the ad917x_set_dac_clk_frequency API.

Alternatively ad917x_set_dac_clk may be used to configure the on chip PLL based on the desired system’s clock frequencies rather than
PLL parameters.

5. Create the application

Using the AD917x API provided in /API/include/AD917x.h write the application code to initialize, configure and monitor the AD917x
API as per your target application requirements.

The ADI source code package for the AD917x API provides some code example applications for using the AD917x API to configure
AD917x DAC devices. These can be found in the /Applications folder and may be used as a reference during the development of the
customer’s application.

Page 80 of 87

APPENDIX A

PSEUDO CODE EXAMPLE FOR AD917X HANDLE

In the pseudo code example A, shows an example of the AD917x handle being configure with the minimum client application. In the
pseudo code example B, shows an example of the AD917x handle being configured with all the optional configurations.

For further details, refer to the DAC Hardware Initialization section and the ad917x_handle_t section for full a description and more
details on configuration.
/*

* \brief pseudo Code example client code to initialise AD917x
*

*/
/*Include Client HAL implementation code*/
#tinclude "app_hal.h"

/*Include AD917x APl interface Headers*/
#include "AD917x.h"

#include "api_errors.h"

#include "api_def.h"

ad917x_handle_t app_dac_h ={

NULL, /* Client App HAL does not require any specific data*/

SPI_SDO, /* Client App HAL SPI uses 4 Wire SPI config */

2000000000, /* Application DAC Clk Frequency */

&app_hal_ad916x_spi_xfer, /* Client App HAL SPI function for AD9164*/
&app_hal_ad916x_delay_us, /* Client App HAL Delay Function */

0, /* Client App does need API to control TX_ENABLE */

0, /* Client App does need APl to control RESETB */

0, /* Client App does want API to initialize external HW required by DAC */
0 /* Client App does want API to initialize external HW required by DAC */

¥

/*AD917x Dac Initialisation by Client Application*/
int app_dac_init()

int dacError = API_ERROR_OK;
ad917x_handle_t *ad917x_h = app_dac_h;
uint8_t revision[3] = {0,0,0};

adi_chip_id_t dac_chip_id;

/*Initialise DAC Module*/

dacError = ad917x_init(ad917x_h);

if (dacError != API_ERROR_OK) {
return-1;

}

dacError = ad917x_get_chip_id(ad917x_h, &dac_chip_id);
if (dacError != API_ERROR_OK) {
return-1;

}

dacError = ad917x_get_revision(ad917x_h,&revision[0],&revision[1],&revision[2]);
if (dacError 1=API_ERROR_OK) {

return APP_ERR_DAC_FAIL;
}

printf("***\r\nll);

printf("AD917x DAC Chip ID: %d \r\n", dac_chip_id.chip_type);
printf("AD917x DAC Product ID: %x \r\n", dac_chip_id.prod_id);
printf("AD917x DAC Product Grade: %d \r\n", dac_chip_id.prod_grade);
printf("AD917x DAC Product Revision: %d \r\n", dac_chip_id.dev_revision);

printf("AD917x Revision: %d. %d.%d \r\n", revision[0], revision[1], revision[2]);
printf("***\r\n").

return0;

1

Figure 4 Example A, Psuedo Code AD917x Handle initialization with Minum Configuration

Page 81 of 87

AD917x API Specification Rev 1.1

#include “app_spi.h”
#include “app_gpio.h”
#tinclude "app_sleep.h"

/*Client Application function to Implement SPI Transfer for AD9172%*/
int app_hal_ad917x_spi_xfer(void *user_data, uint8_t *wbuf, uint8_t *rbuf, int len)

{

/*Pseudo Code example of implementing SPi transfer funtion*/

uintlé_t address;

uint8_t value;

uint8_t dac_chip_select;

struct app_hal_data_t *dac_user_data;

/*Optional: get any client defined data from user_data*/
/*For example could be used to retrieve chip select*/
dac_user_data = (struct app_hal_data_t *) user_data;
dac_chip_select = dac_user_data->dac_chip_select_ref;

/*AD916x DAC SPI transactions are always 3 bytes*/
if (size_bytes != 3)
{
/* 2 bytes for adderss and 1 byte data */
return 2;

}

address = wbuf[0];
address <<= 8;
address |= wbuf[1];
value = wbuf[2];

if ((address & 0x8000) == 0)

{
/* Write */
app_hal_spi_write(dac_chip_select, address, value);
rbuf[2] = OxFF;

}

else

{
/* Read */
/* Clear the read bit as we read from local array */
address &= ~0x8000;
app_hal_spi_write(dac_chip_select, address, &value);
rbuf[2] = value;

}

return 0;

}

int app_hal_ad917x_delay_us(void *user_data, unsigned int time_us)

{
/*Code to sleep or wait*/
app_hal_sleep(time_us);
return 0;

Figure 5 Psuedo Code example for Required HAL functions

Page 82 of 87

/*
* \brief pseudo Code example client code to initialise AD917x
*

*/
/*Include Client HAL implementation code*/
#include "app_hal.h"

/*Include AD917x APl interface Headers*/
#include "AD917x.h"

#include "api_errors.h"

#include "api_def.h"

ad917x_handle_t app_dac_h ={

&app_hal_user_data, /* Client App HAL does require any specific data*/

SPI_SDO, /* Client App HAL SPI uses 4 Wire SPI config */

2000000000, /* Application DAC Clk Frequency */

&app_hal_ad917x_spi_xfer, /* Client App HAL SPI function for AD9164*/
&app_hal_ad917x_delay_us, /* Client App HAL Delay Function */
&app_hal_ad917x_set_tx_enable_pin, /* Client App HAL function to control TX_ENABLE */
&app_hal_ad917x_set_resetb_pin, /* Client App does need API to control RESETB */

&app_init_dac_hw, /* Client App does want API to initialize external HW required by DAC */
&app_shutdown_dac_hw /* Client App does want API to initialize external HW required by DAC */

%

/*AD917x Dac Initialisation by Client Application*/
int app_dac_init()
{

int dacError = API_ERROR_OK;

ad917x_handle_t *ad916x_h = app_dac_h;

uint8_t revision[3] = {0,0,0};

adi_chip_id_t dac_chip_id;

/*Initialise DAC Module*/

dacError =ad917x_init(ad917x_h);

if (dacError != API_ERROR_OK) {
return-1;

}

dacError =ad917x_get_chip_id(ad917x_h, &dac_chip_id);
if (dacError != API_ERROR_OK) {
return-1;

}

dacError =ad917x_get_revision(ad917x_h,&revision[0],&revision[1],&revision[2]);
if (dacError !=API_ERROR_OK) {

return APP_ERR_DAC_FAIL;
}

printf("***\r\n");

printf("AD917x DAC Chip ID: %d \r\n", dac_chip_id.chip_type);

printf("AD917x DAC Product ID: %d \r\n", dac_chip_id.prod_id);
printf("AD917x DAC Product Grade: %d \r\n", dac_chip_id.prod_grade);
printf("AD917x DAC Product Revision: %d \r\n", dac_chip_id.dev_revision);
printf("AD917x Revision: %d. %d.%d \r\n", revision[0Q], revision[1], revision[2]);

printf("***\r\n");

return 0;

Figure 6 Example B, Psuedo Code AD917x Handle initialization with Minimum Configuration

Page 83 of 87

AD917x API Specification Rev 1.1

APPENDIX B

FLOW CHART FOR EXAMPLE AD917X INITIALISATION

Legend
. AD9172 Configuration

Instantiate AD9172 handler

Ad9172_handler_t dac_h
I 1-
i

=11

Initialize AD9172 API
Ad9172_init(dac_h)

Initialize AD9172 API
ad9172 resetidac_h)

Page 84 of 87

AD917x API Specification

Rev 1.1

FLOW CHART FOR EXAMPLE CLK CONFIGURATION

Instantiate AD917x handler
ad916x_handler_tdac_h ={..};

Initialize AD917x API
ad917x_init(dac_h)

Initialize AD917x API
ad917x_reset(dac_h)

Configure system to

provide desired DAC

> CLK or Reference to
AD917x

Review Clock
Scheme
Parameters

——Re Configure:

Turn ON On Chip PLL,
Set reference clock.

Set the DAC Clk frequency.
ad917x_set_dac_clk(dac_h,9830e6, 1,30720000)

System is using
Direct Clk Frequency
?

No Check DAC CLK Status
ad917x_get_dac_clk_status(ad917x_h, &pll_lock, &dll_lock)

Is DLL and PLL
Locked?

AD917x DAC Clk Configured

X 2 Set the DAC Clk frequency.

Legend
[AD917x Configuration

. System Configuration

Turn off On Chip PLL, No reference clock.

ad917x_set_dac_clk(dac_h,9830e6, 0,0)

Page 85 of 87

AD917x API Specification Rev 1.1

ADI Confidential

FLOW CHART FOR EXAMPLE JESD CONFIGURATION

Instantiate AD917x handler
ad916x_handler_tdac_h 5

Legend

Initialize AD917x API . AD917x Configuration

ad917x_init(dac_h)

Initialize AD917x API
ad917x_reset(dac_h)

No Locked Configure system to

provide desired DAC

CLK or Reference to
AD917x

Set the DAC Clock frequency for the desired DAC mode
ad917x_set_dac_clk(dac_h,9830e6, 0,0)

Config the JESD Reciever datapath,

Channelizer Interpolation :1

. System Configuration

DAC Interpolation:8

ad917x_jesd_config_datapath(ad917x_h, 1, 0x9, 1, 8);

Enable the JESD Reciever datapath,
Lane 8

Equaliser Calibration Mode:1
Enable JESD Datapath

ad917x_jesd_enable_datapath(ad917x_h, OxFF, 0:

Check Serdes PLL
status

Configure and
Enable JESD

Transmitter.

Enable the JESD Receiver data ath,
ad917x_jesd_enable_link(ad917x_h, JESL_LINK_ALL, Ox1)

Check Link Status
ad916x_jesd_get_link_status(dac_h,
JESD_LINKO, &link_status)
ad916x_jesd_get_link_status(dac_h,
JESD_LINK1, &link_status)

Page 86 of 87

Deubug JESD Link
Configuration

Is JESD Config Error on JESD

Transmistter?

REVISION HISTORY
08/06/2017—Rev 1.0

Initial Release with Rev 1.0.2 APIL......cccceveeuviverecrrennnes Universal
Minor Updated with Rev 1.1.1 APTcccocoeuvucrrvncrnecnnee Universal

Page 87 of 87

	Introduction
	Purpose
	Scope
	Disclaimer

	Software Architecture
	Folder Structure
	/API
	/API/include
	/API/AD917x
	/API/common
	/API/AD917x/doc
	/Application/

	API Interface
	Overview
	AD917x.h
	API Handle

	api_config.h
	adi_def.h
	DAC Hardware Initialization
	SPI Access
	RESETB Pin Access
	System Software Functions
	Delay Function

	HAL Function Pointer DataTypes
	*hw_open_t
	*hw_close_t
	*spi_xfer_t
	* tx_en_pin_ctrl_t
	*reset_pin_ctrl_t
	* delay_us_t
	ADI API Enumerations DataTypes
	adi_chip_id_t
	signal_type_t
	signal_coupling_t
	jesd_link_t
	jesd_syncoutb_t
	jesd_param_t

	Error Handling
	Error Codes

	AD917x API Library
	AD917x API Reference Handle
	ad917x_handle_t

	AD917x API Definitions, Data Structures and Enumerations
	ad917x_dds_select_t
	ad917x_dac_select_t
	ad917x_channel_select_t
	ad917x _jesd_link_stat_t
	ad917x_jesd_serdes_pll_flg_t

	AD917x APIs
	ad917x_init
	ad917x_deinit
	ad917x_reset
	ad917x_get_chip_id
	ad917x _set_dac_clk_frequency
	ad917x_get_dac_clk_frequency
	ad917x_set_dac_pll_config
	ad917x_get_dac_clk_status
	ad917x_set_dac_clk
	ad917x_set_clkout_config
	ad917x_set_page_idx
	ad917x_get_page_idx
	ad917x_set_channel_gain
	ad917x_get_channel_gain
	ad917x_set_dc_cal_tone_amp
	ad917x_ddsm_cal_dc_input_set
	ad917x_ddsm_cal_dc_input_get
	ad917x_dc_test_tone_set
	ad917x_dc_test_tone_get
	ad917x_nco_channel_freq_get
	ad917x_nco_main_freq_get
	ad917x_jesd_config_datapath
	ad917x_jesd_get_cfg_param
	ad917x_jesd_set_sysref_enable
	ad917x_jesd_get_sysref_enable
	ad917x_jesd_set_syncoutb_enable
	ad917x_jesd_get_cfg_status
	ad917x_jesd_set_scrambler_enable
	ad917x_jesd_set_lane_xbar
	ad917x_jesd_get_lane_xbar
	ad917x_jesd_invert_lane
	ad917x_jesd_enable_datapath
	ad917x_jesd_get_pll_status
	ad917x_jesd_enable_link
	ad917x_jesd_get_link_status
	ad917x_nco_set_ftw
	ad917x_nco_get_ftw
	ad917x_nco_set_phase_offset
	ad917x_nco_get_phase_offset
	ad917x_nco_enable
	ad917x_register_write
	ad917x_register_read
	ad917x_get_revision

	Build and Integration Guide
	Building the AD917x API Library
	1. Port the Source Code
	2. Building the AD917x Library

	Integrating the AD917x API Library into an Application
	1. Implement the Hardware Abstraction Functions
	2. Include the AD917x API Interface headers
	3. Instantiate AD917x Handler
	Point handler to SPI and Delay HAL Functions
	Set the SPI Interface Configuration

	4. Set the DAC CLK Frequency
	5. Create the application

	Appendix A
	Pseudo Code Example for AD917x handle

	Appendix B
	Flow Chart For Example AD917x Initialisation
	Flow Chart For Example CLK Configuration
	Flow Chart For Example JESD Configuration

	Revision History

